44,334 research outputs found

    Minimum impact and immediacy of citations to physics open archives of arXiv.org: Science Citation Index based reports

    Get PDF
    The present work has calculated the minimum Open Archive Impact Factors and Open Archive Immediacy Index for the Physics Classes of arXiv.org as calculated for traditional journals in Journal Citation Reports of the Institute of Scientific Information using Science Citation Index without the citation by the classes itself. The calculated Impact Factors reveal that High-Energy Physics classes of arXiv.org (‘hep-th’, ‘hep-lat’, ‘hep-ex’, and ‘hep-ph’) have made more impact on the scientific community than any other classes except ‘nucl-ex’. The Impact Factors for the year 2003 are: ‘hep-th’ (0.999), ‘nucl-ex’ (0.806), ‘hep-lat’ (0.766), ‘hep-ex’ (0.73), ‘hep-ph’ (0.719), ‘nucl-th’ (0.338), ‘quant-ph’ (0.334), ‘cond-mat’ (0.313), ‘astro-ph’ (0.195), ‘math-ph’ (0.162), ‘physics’ (0.061), and ‘gr-qc’ (0.002). If the period for getting the citations to the open archive classes is considered one year as against two years for journal articles, the rank of the classes is the same. The immediacy of citing the Open Archives is also high for the High-Energy Physics classes. The Immediacy Indexes for the year 2003 are: ‘hep-ex’ (0.619), ‘hep-th’ (0.454), ‘hep-ph’ (0.44), ‘hep-lat’ (0.263), ‘nucl-ex’ (0.238), ‘quant-ph’ (0.202), ‘nucl-th’ (0.185), ‘cond-mat’ (0.168), ‘astro-ph’ (0.094), ‘math-ph’ (0.075), ‘physics’ (0.03), and ‘gr-qc’ (0.002). The impact is definitely much higher than what is concluded from the calculated factors because self-citations are not reckoned in the study. Use of web-tools like ‘Citebase’, ‘Citeseer’ etc. may strengthen the above argument

    Identification of blast resistance expression in rice genotypes using molecular markers (RAPD & SCAR)

    Get PDF
    Rice is the second most important cereal crop of developing countries and the staple food of about 65% of the world’s population. In this endeavor, it is important to identify resistant gene(s) with the help of markers. Once a gene is tagged with a molecular marker, it can be transferred selectively into different genetic backgrounds by marker assisted selection. For this purpose, 48 elite Indian and exotic rice genotypes were evaluated for resistance to blast disease under induced epiphytotic conditions obtained in the field. The disease severity (%) and AUDPC was less than 45% and 1000, respectively, in all the resistant genotypes, while it was around 85% and higher than 2000 in the case of susceptible genotypes, respectively. Substantial variability was present among rice genotypes for resistance toMagnaporthe grisea. Ten random amplified polymorphic DNAs (RAPD) and two sequence characterized amplified region (SCAR) primers were used to identify blast resistant genes. Markers OPA-05, OPF-06, OPF-09, OPF-17, OPG-17, OPG-18, OPG-19, OPH-18, OPK-12, P-265-550 and P-286-350 found linked to blast resistance in most of the resistant genotypes could be considered as potent molecular markers in the selection of blast resistant genotypes. Amplification with RAPD and SCAR primers revealed a nonallelic relationship among resistant genotypes and thus, there is a good possibility of obtaining enhanced resistance through gene pyramiding

    COBE ground segment gyro calibration

    Get PDF
    Discussed here is the calibration of the scale factors and rate biases for the Cosmic Background Explorer (COBE) spacecraft gyroscopes, with the emphasis on the adaptation for COBE of an algorithm previously developed for the Solar Maximum Mission. Detailed choice of parameters, convergence, verification, and use of the algorithm in an environment where the reference attitudes are determined form the Sun, Earth, and star observations (via the Diffuse Infrared Background Experiment (DIRBE) are considered. Results of some recent experiments are given. These include tests where the gyro rate data are corrected for the effect of the gyro baseplate temperature on the spacecraft electronics

    Quasi Switched Capacitor based integrated Boost Series Parallel Fly-back Converter for energy Storage Applications

    Get PDF
    711-715A quasi-Switched Capacitor technique (QSC) is used to control the switch in Interconnected Boost Series Parallel Fly-Back Converter (IBSPFC). The QSC based IBSPFC does not require any snubber circuits for all the MOSFET switches presented at primary and secondary side and power can also be transferred even if one the winding gets damage. The primary side winding of the fly-back transformer is coupled in series across with bulk capacitor to minimize switch voltage stress and the secondary winding of the 1:1 fly-back transformer is coupled with dc voltage source, three switches and capacitor which forms a Quasi switched capacitor technique. Working techniques of quasi-switched capacitor with IBSPFC have been introduced. A 75v input, 100v output and DC-DC isolated Converter switching at frequency of 100 kHz is modeled using FPGA SPARTAN6LX9 and experimental results have been presented
    corecore