1,843 research outputs found

    Cactus: Issues for Sustainable Simulation Software

    Full text link
    The Cactus Framework is an open-source, modular, portable programming environment for the collaborative development and deployment of scientific applications using high-performance computing. Its roots reach back to 1996 at the National Center for Supercomputer Applications and the Albert Einstein Institute in Germany, where its development jumpstarted. Since then, the Cactus framework has witnessed major changes in hardware infrastructure as well as its own community. This paper describes its endurance through these past changes and, drawing upon lessons from its past, also discusses futureComment: submitted to the Workshop on Sustainable Software for Science: Practice and Experiences 201

    Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass

    Get PDF
    At the transition from a static to a dynamic deformation regime of a shear band in bulk metallic glasses, stress transients in terms of overshoots are observed. We interpret this phenomenon with a repeated shear-melting transition and are able to access a characteristic time for a liquidlike to solidlike transition in the shear band as a function of temperature, enabling us to understand why shear bands arrest during inhomogenous serrated flow in bulk metallic glasses

    The Boson peak of model glass systems and its relation to atomic structure

    Get PDF
    Abstract.: Bulk metallic glasses (BMGs) exhibit a rich variety of vibrational properties resulting from significant atomic scale disorder. The Boson peak, which reflects an enhancement of states in the low frequency regime of the vibrational density of states (VDOS), is one such experimental signature of amorphous materials that has gained much interest in recent times. However, the precise nature of these low frequency modes and how they are influenced by local atomic structure remains unclear. Past simulation work has demonstrated that such modes consist of a mixture of propagating and localized components, and have been referred to as quasi-localized modes. Using standard harmonic analysis, the present work investigates the structural origin of such modes by diagonalising the Hessian of atomistic BMG structures derived from molecular dynamics simulations using a binary Lennard Jones pair potential. It is found that the quasi-localized vibrational modes responsible for the low frequency enhancement of the VDOS exist in a structural environment characterized primarily by low elastic shear moduli, but also increased free volume, a hydrostatic pressure that is tensile, and low bulk moduli. These findings are found to arise from the long-range attractive nature of the pair-wise interaction potential, which manifests itself in the corresponding Hessian as long-range off-diagonal disorder characterized by a distribution of negative effective spring constant

    Spiele im Fremdsprachenunterricht

    Get PDF

    Approximate Minimum Diameter

    Full text link
    We study the minimum diameter problem for a set of inexact points. By inexact, we mean that the precise location of the points is not known. Instead, the location of each point is restricted to a contineus region (\impre model) or a finite set of points (\indec model). Given a set of inexact points in one of \impre or \indec models, we wish to provide a lower-bound on the diameter of the real points. In the first part of the paper, we focus on \indec model. We present an O(21ϵdϵ2dn3)O(2^{\frac{1}{\epsilon^d}} \cdot \epsilon^{-2d} \cdot n^3 ) time approximation algorithm of factor (1+ϵ)(1+\epsilon) for finding minimum diameter of a set of points in dd dimensions. This improves the previously proposed algorithms for this problem substantially. Next, we consider the problem in \impre model. In dd-dimensional space, we propose a polynomial time d\sqrt{d}-approximation algorithm. In addition, for d=2d=2, we define the notion of α\alpha-separability and use our algorithm for \indec model to obtain (1+ϵ)(1+\epsilon)-approximation algorithm for a set of α\alpha-separable regions in time O(21ϵ2.n3ϵ10.sin(α/2)3)O(2^{\frac{1}{\epsilon^2}}\allowbreak . \frac{n^3}{\epsilon^{10} .\sin(\alpha/2)^3} )

    Detuning effects in the one-photon mazer

    Full text link
    The quantum theory of the mazer in the non-resonant case (a detuning between the cavity mode and the atomic transition frequencies is present) is written. The generalization from the resonant case is far from being direct. Interesting effects of the mazer physics are pointed out. In particular, it is shown that the cavity may slow down or speed up the atoms according to the sign of the detuning and that the induced emission process may be completely blocked by use of a positive detuning. It is also shown that the detuning adds a potential step effect not present at resonance and that the use of positive detunings defines a well-controlled cooling mechanism. In the special case of a mesa cavity mode function, generalized expressions for the reflection and transmission coefficients have been obtained. The general properties of the induced emission probability are finally discussed in the hot, intermediate and cold atom regimes. Comparison with the resonant case is given.Comment: 9 pages, 8 figure

    Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity

    Full text link
    We demonstrate purely resonant continuous-wave optical laser excitation to coherently prepare an excitonic state of a single semiconductor quantum dot (QDs) inside a high quality pillar microcavity. As a direct proof of QD resonance fluorescence, the evolution from a single emission line to the characteristic Mollow triplet10 is observed under increasing pump power. By controlled utilization of weak coupling between the emitter and the fundamental cavity mode through Purcell-enhancement of the radiative decay, a strong suppression of pure dephasing is achieved, which reflects in close to Fourier transform-limited and highly indistinguishable photons with a visibility contrast of 90%. Our experiments reveal the model-like character of the coupled QD-microcavity system as a promising source for the generation of ideal photons at the quantum limit. From a technological perspective, the vertical cavity symmetry -- with optional dynamic tunability -- provides strongly directed light emission which appears very desirable for future integrated emitter devices.Comment: 24 pages, 6 figure

    A Massive Data Parallel Computational Framework for Petascale/Exascale Hybrid Computer Systems

    Full text link
    Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first non-trivial demonstration of its usefulness, we successfully developed a new 3D CFD code that achieves improved performance.Comment: Parallel Computing 2011 (ParCo2011), 30 August -- 2 September 2011, Ghent, Belgiu

    Full-field quantum correlations of spatially entangled photons

    Get PDF
    Spatially entangled twin photons allow the study of high-dimensional entanglement, and the Laguerre-Gauss modes are the most commonly used basis to discretize the single photon mode spaces. In this basis, to date only the azimuthal degree of freedom has been investigated experimentally due to its fundamental and experimental simplicity. We show that the full spatial entanglement is indeed accessible experimentally, i.e., we have found practicable radial detection modes with negligible cross correlations. This allows us to demonstrate hybrid azimuthal -- radial quantum correlations in a Hilbert space with more than 100 dimensions per photon.Comment: 6 page
    corecore