224 research outputs found
First E region observations of mesoscale neutral wind interaction with auroral arcs
We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ∼50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7–16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data
Identification of clouds and aurorae in optical data images
In this paper we present an automatic image recognition technique used to identify clouds and aurorae in digital images, taken with a CCD all-sky imager. The image recognition algorithm uses image segmentation to generate a binary block object image. Object analysis is then performed on the binary block image, the results of which are used to assess whether clouds, aurorae and stars are present in the original image. The need for such an algorithm arises because the optical study of particle precipitation into the Earth's atmosphere by the Ionosphere and Radio Propagation Group at Lancaster generates vast data-sets, over 25 000 images/year, making manual classification of all the images impractical
Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio waves
This paper presents the first study of the modulation of polar mesospheric winter echoes (PMWE) by artificial radio wave heating using computational modeling and experimental observation in different radar frequency bands. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer associated with mesospheric smoke particles. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and turnoff are distinct parameters that are a function of radar frequency. The variation of PMWE strength with PMWE source region parameters such as electron-neutral collision frequency, photodetachment current, electron temperature enhancement ratio, dust density, and radius is considered. The comparison of recent PMWE measurements at 56 MHz and 224 MHz with computational results is discussed, and dust parameters in the PMWE generation regime are estimated. Predictions for HF PMWE modification and its connection to the dust charging process by free electrons is investigated. The possibility for remote sensing of dust and plasma parameters in artificially modified PMWE regions using simultaneous measurements in multiple frequency bands are discussed. © 2016. American Geophysical Union. All Rights Reserved
Ionospheric Response at Conjugate Locations During the 7–8 September 2017 Geomagnetic Storm Over the Europe-African Longitude Sector
This paper focuses on unique aspects of the ionospheric response at conjugate locations over Europe and South Africa during the 7–8 September 2017 geomagnetic storm including the role of the bottomside and topside ionosphere and plasmasphere in influencing electron density changes. Analysis of total electron content (TEC) on 7 September 2017 shows that for a pair of geomagnetically conjugate locations, positive storm effect was observed reaching about 65% when benchmarked on the monthly median TEC variability in the Northern Hemisphere, while the Southern Hemisphere remained within the quiet time variability threshold of ±40%. Over the investigated locations, the Southern Hemisphere midlatitudes showed positive TEC deviations that were in most cases twice the comparative response level in the Northern Hemisphere on the 8 September 2017. During the storm main phase on 8 September 2017, we have obtained an interesting result of ionosonde maximum electron density of the F2 layer and TEC derived from Global Navigation Satellite System (GNSS) observations showing different ionospheric responses over the same midlatitude location in the Northern Hemisphere. In situ electron density measurements from SWARM satellite aided by bottomside ionosonde-derived TEC up to the maximum height of the F2 layer (hmF2) revealed that the bottomside and topside ionosphere as well as plasmasphere electron content contributions to overall GNSS-derived TEC were different in both hemispheres especially for 8 September 2017 during the storm main phase. The differences in hemispheric response at conjugate locations and on a regional scale have been explained in terms of seasonal influence on the background electron density coupled with the presence of large-scale traveling ionospheric disturbances and low-latitude-associated processes. The major highlight of this study is the simultaneous confirmation of most of the previously observed features and their underlying physical mechanisms during geomagnetic storms through a multi–data set examination of hemispheric differences. © 2020. American Geophysical Union. All Rights Reserved
An MPEG-7 scheme for semantic content modelling and filtering of digital video
Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users
Competitiveness and communication for effective inoculation byRhizobium, Bradyrhizobium and vesicular-arbuscular mycorrhiza fungi
After a short summary on the ecology and rhizosphere biology of symbiotic bacteria and vesicular-arbuscular (VA) mycorrhiza fungi and their application as microbial inocula, results on competitiveness and communication are summarized. Stress factors such as high temperature, low soil pH, aluminium concentrations and phytoalexins produced by the host plants were studied withRhizobium leguminosarum bv.phaseoli andRhizobium tropici onPhaseolus beans. Quantitative data for competitiveness were obtained by usinggus + (glucoronidase) labelled strains, which produce blue-coloured nodules. ForPhaseolus-nodulating rhizobia, a group specific DNA probe was also developed, which did not hybridize with more than 20 other common soil and rhizosphere bacteria. Results from several laboratories contributing to knowledge of signal exchange and communication in theRhizobium/Bradyrhizobium legume system are summarized in a new scheme, including also defense reactions at the early stages of legume nodule initiation. Stimulating effects of flavonoids on germination and growth of VA mycorrhiza fungi were also found. A constitutive antifungal compound in pea roots, -isoxazolinonyl-alanine, was characterized
- …