2,143 research outputs found
A diagnostic multiplex PCR scheme for identification of plant-associated bacteria of the genus Pantoea.
Unrefereed reprintThe genus Pantoea forms a complex of more than 25 species, among which several cause diseases of several crop plants, including rice. Notably, strains of Pantoea ananatis and Pantoea stewartii have been found to cause bacterial leaf blight of rice in Togo and Benin, while other authors have observed that Pantoea agglomerans can also cause bacterial leaf blight of rice. The contribution of these and perhaps other species of Pantoea to plant diseases and yield losses of crop plants is currently not well documented, partly due to the lack of efficient diagnostic tools
Designer peptides to understand the mineralization of calcium salts
Recently, we reported the extraction, purification and amino acid sequence of ansocalcin, the major goose eggshell matrix protein. In vitro studies showed that ansocalcin induces spherical calcite crystal aggregates. We designed two peptides using the unique features of the sequence of ansocalcin and the role of these peptides in CaCO₃ crystallization was investigated. The peptides showed similar activities as compared to ansocalcin, but at a higher concentration. The full characterization of the peptides and a rational for the observed morphology for the calcite crystals are discussed in detail.Singapore-MIT Alliance (SMA
From LTL and Limit-Deterministic B\"uchi Automata to Deterministic Parity Automata
Controller synthesis for general linear temporal logic (LTL) objectives is a
challenging task. The standard approach involves translating the LTL objective
into a deterministic parity automaton (DPA) by means of the Safra-Piterman
construction. One of the challenges is the size of the DPA, which often grows
very fast in practice, and can reach double exponential size in the length of
the LTL formula. In this paper we describe a single exponential translation
from limit-deterministic B\"uchi automata (LDBA) to DPA, and show that it can
be concatenated with a recent efficient translation from LTL to LDBA to yield a
double exponential, \enquote{Safraless} LTL-to-DPA construction. We also report
on an implementation, a comparison with the SPOT library, and performance on
several sets of formulas, including instances from the 2016 SyntComp
competition
Eggshell Matrix Protein Mimetics: Elucidation of Molecular Mechanism of Goose Eggshell Calcification using Designed Peptides
Model peptides were designed, synthesized and conducted a detailed structure-property study to unravel the molecular mechanism of goose eggshell calcification. The peptides were designed based on the primary structural features of the eggshell matrix proteins ansocalcin and OC-17. In vitro CaCO₃ crystal growth experiments in presence of these peptides showed calcite crystal aggregation as observed in the case of the parent protein ansocalcin. The structure of these peptides in solution was established using intrinsic tryptophan fluorescence studies and quasi-elastic light scattering experiments. The structural features are correlated with observed results of the in vitro crystallization studies.Singapore-MIT Alliance (SMA
Effect of V-shaped Ribs on Internal Cooling of Gas Turbine Blades
Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature. The rotor inlet temperatures in most gas turbines are far higher than the melting point of the blade material. Hence the turbine blades need to be cooled. In this work, simulations were carried out with the leading edge of gas turbine blade being internally cooled by coolant passages with V-shaped ribs at angles of 30°, 45° or 60° and at three aspect ratios (1:1, 1:2 and 2:3). The trailing edge of the blade was cooled by cylindrical and triangular pin-fin perforations in staggered and inline arrangements. Numerical analyses were carried out for each configuration of the cooling passages. The best cooling passages for leading edge and trailing edge were deduced by comparing the results of these analyses. It was found that using V-shaped ribs and fins induces a swirling flow, which in turn increases the velocity gradient and hence produces an improvement in heat transfer. The results show that under real time flow conditions, the application of V-shaped ribs and pin-fin perforations is a very promising technique for improving blade life
Evidence for structural and electronic instabilities at intermediate temperatures in -(BEDT-TTF)X for X=Cu[N(CN)]Cl, Cu[N(CN)]Br and Cu(NCS): Implications for the phase diagram of these quasi-2D organic superconductors
We present high-resolution measurements of the coefficient of thermal
expansion of the quasi-twodimensional
(quasi-2D) salts -(BEDT-TTF)X with X = Cu(NCS), Cu[N(CN)]Br
and Cu[N(CN)]Cl. At intermediate temperatures (B), distinct anomalies
reminiscent of second-order phase transitions have been found at
K and 45 K for the superconducting X = Cu(NCS) and Cu[N(CN)]Br salts,
respectively. Most interestingly, we find that the signs of the uniaxial
pressure coefficients of are strictly anticorrelated with those of
. We propose that marks the transition to a spin-density-wave
(SDW) state forming on minor, quasi-1D parts of the Fermi surface. Our results
are compatible with two competing order parameters that form on disjunct
portions of the Fermi surface. At elevated temperatures (C), all compounds show
anomalies that can be identified with a kinetic, glass-like
transition where, below a characteristic temperature , disorder in the
orientational degrees of freedom of the terminal ethylene groups becomes frozen
in. We argue that the degree of disorder increases on going from the X =
Cu(NCS) to Cu[N(CN)]Br and the Cu[N(CN)]Cl salt. Our results
provide a natural explanation for the unusual time- and cooling-rate
dependencies of the ground-state properties in the hydrogenated and deuterated
Cu[N(CN)]Br salts reported in the literature.Comment: 22 pages, 7 figure
Efficient Online Timed Pattern Matching by Automata-Based Skipping
The timed pattern matching problem is an actively studied topic because of
its relevance in monitoring of real-time systems. There one is given a log
and a specification (given by a timed word and a timed automaton
in this paper), and one wishes to return the set of intervals for which the log
, when restricted to the interval, satisfies the specification
. In our previous work we presented an efficient timed pattern
matching algorithm: it adopts a skipping mechanism inspired by the classic
Boyer--Moore (BM) string matching algorithm. In this work we tackle the problem
of online timed pattern matching, towards embedded applications where it is
vital to process a vast amount of incoming data in a timely manner.
Specifically, we start with the Franek-Jennings-Smyth (FJS) string matching
algorithm---a recent variant of the BM algorithm---and extend it to timed
pattern matching. Our experiments indicate the efficiency of our FJS-type
algorithm in online and offline timed pattern matching
A statistical model for the intrinsically broad superconducting to normal transition in quasi-two-dimensional crystalline organic metals
Although quasi-two-dimensional organic superconductors such as
-(BEDT-TTF)Cu(NCS) seem to be very clean systems, with apparent
quasiparticle mean-free paths of several thousand \AA, the superconducting
transition is intrinsically broad (e.g K wide for K).
We propose that this is due to the extreme anisotropy of these materials, which
greatly exacerbates the statistical effects of spatial variations in the
potential experienced by the quasiparticles. Using a statistical model, we are
able to account for the experimental observations. A parameter , which
characterises the spatial potential variations, may be derived from
Shubnikov-de Haas oscillation experiments. Using this value, we are able to
predict a transition width which is in good agreement with that observed in MHz
penetration-depth measurements on the same sample.Comment: 8 pages, 2 figures, submitted to J. Phys. Condens. Matte
- …
