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Abstract 12 

 13 

Background: The genus Pantoea forms a complex of more than 25 species, among which 14 

several cause diseases of several crop plants, including rice. Notably, strains of Pantoea 15 

ananatis and Pantoea stewartii have been found to cause bacterial leaf blight of rice in Togo 16 

and Benin, while other authors have observed that Pantoea agglomerans can also cause 17 

bacterial leaf blight of rice. The contribution of these and perhaps other species of Pantoea to 18 

plant diseases and yield losses of crop plants is currently not well documented, partly due to 19 

the lack of efficient diagnostic tools.  20 

 21 

Result: Using 34 whole genome sequences of the three-major plant-pathogenic Pantoea 22 

species, a set of PCR primers that specifically detect each of the three species, 23 

P. agglomerans, P. ananatis, and P. stewartii, was designed. A multiplex PCR protocol which 24 

can distinguish these three species and also detects members of other Pantoea species was 25 
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 2 

further developed. Upon validation on a set of reference strains, 609 suspected Pantoea 26 

strains that were isolated from rice leaves or seeds originating from 11 African countries were 27 

screened. In total, 41 P. agglomerans strains from eight countries, 79 P. ananatis strains from 28 

nine countries, 269 P. stewartii strains from nine countries and 220 unsolved Pantoea strains 29 

from ten countries were identified. The PCR protocol allowed detecting Pantoea bacteria 30 

grown in vitro, in planta and in rice seeds. The detection threshold was estimated at 5 ng/mL 31 

of total genomic DNA and 1×105 CFU/mL of heated cells.  32 

 33 

Conclusion: This new molecular diagnostic tool will help accurately diagnose major plant-34 

pathogenic species of Pantoea. Due to its robustness, specificity, sensitivity, and cost 35 

efficiency it will be very useful for plant protection services and for the epidemiological 36 

surveillance of these important crop-threatening bacteria. 37 

 38 

 39 

Keywords: Plant pathogen, Pantoea, rice, Oryza sativa, multiplex PCR, diagnostic tool 40 

  41 
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 3 

Background 42 

 43 

The genus Pantoea was first described in 1989 and was recently taxonomically classified as a 44 

member of the Erwiniaceae family [1]. More than 25 species of this genus have been 45 

described and reported worldwide [2,3]. Etymologically, the genus name Pantoea is derived 46 

from the Greek word ‘Pantoios’, which means “of all sorts or sources” and reflects the diverse 47 

geographical and ecological sources from which the bacteria have been isolated. Several 48 

species of the genus are qualified as versatile and ubiquitous bacteria because they have been 49 

isolated from many different ecological niches and hosts [2,4]. Remarkably, some species 50 

have the ability to colonize and interact with members of both the plant and the animal 51 

Kingdom [5]. Among the plant-interacting species, Pantoea ananatis, Pantoea agglomerans 52 

and Pantoea stewartii are well known for their phytopathogenic characteristics. They are 53 

recognized as the causal agent of several diseases, such as leaf blight, spot disease, dieback, 54 

grain discoloration, seed stalk rot, center rot, stem necrosis, palea browning, bulb decay etc. 55 

and affect several economically important crops, including cereals, fruits and vegetables 56 

[2,6,7].  57 

 58 

Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae is an important disease of rice 59 

and affects rice cultivation in most regions of the world were rice is grown. The bacterium has 60 

been associated with this disease since a very long time [8]. Surveys were conducted from 61 

2010 to 2016 to estimate the extent and importance of the disease and the phytosanitary status 62 

of rice fields in West Africa. While leaves showing bacterial blight (BB)-like symptoms were 63 

frequent, isolation or molecular detection of xanthomonads using the Lang et al diagnostic 64 

tool [9] often failed. Instead, other bacteria forming yellow colonies were observed and turned 65 

out to belong to the species P. ananatis or P. stewartii, as documented for samples from Togo 66 
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and Benin [10,11]. Additionally, other cases of BB and grain discoloration caused by 67 

Sphingomonas sp. and other undescribed species have been detected in several sub-Saharan 68 

Africa countries [12]. This situation represents an “emerging” bacterial species complex that 69 

may constitute a threat to rice production in Africa. Therefore, a robust, specific, sensitive, 70 

and cost efficient diagnostic tool is of primary importance for accurate pathogen detection. 71 

However, none of the several simplex and multiplex PCR tools [13–18] and other molecular 72 

[19–24], physiological, biochemical [24–28] diagnostic tools available for Pantoea allows 73 

accurate simultaneous detection of the three major plant-pathogenic Pantoea species. Some of 74 

these methods are poorly reproducible and often limited to a single species while others are 75 

reproducible but again limited to one species or are not suited to doubtlessly detect African 76 

strains.  77 

 78 

To overcome this unsatisfying situation, a molecular method was set up for detecting in a 79 

single reaction the three major plant-pathogenic Pantoea species (P. ananatis, P. stewartii 80 

and P. agglomerans), as well as other members of the genus. A universal multiplex PCR tool 81 

was therefore developed and first tested in silico on available genome sequences and on a set 82 

of reference strains from USA, Brazil, Spain and Japan. Afterwards, 609 suspected Pantoea 83 

strains from eleven Africans countries were evaluated with the newly described diagnostic 84 

tool. P. agglomerans was detected in rice leaves from several African countries for the first 85 

time. Finally, the specificity and sensitivity of the multiplex PCR was monitored by analyzing 86 

serial dilutions of genomic DNA, serial dilutions of bacterial cell suspensions and solutions of 87 

ground leaves and seeds that had been artificially or naturally infected. This new diagnostic 88 

tool will prove useful for phytosanitary services in routine diagnostics of Pantoea spp in any 89 

type of sample (e.g. leaves, seeds, soil, water). 90 

 91 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/456806doi: bioRxiv preprint first posted online Oct. 30, 2018; 

http://dx.doi.org/10.1101/456806


 5 

 92 

Materials and Methods 93 

 94 

Bioinformatics prediction of specific PCR primers 95 

Pantoea genome sequences were retrieved from NCBI GenBank (Table 1). Sequences for 96 

housekeeping genes were identified by TBLASTN [29]. Sequences were then aligned with 97 

MUSCLE [30] at EMBL-EBI [31]. Diagnostic primers that can differentiate the three species, 98 

P. agglomerans, P. ananatis and P. stewartii, and one primer pair that would amplify DNA 99 

from the whole Pantoea genus were designed manually. The Tm for PCR primers were 100 

automatically predicted by Tm calculator tool at 101 

http://www.thermoscientificbio.com/webtools/multipleprimer/ which was developed based on 102 

the modified nearest-neighbor interaction method [32]. 103 

 104 

Optimization of the multiplex PCR 105 

Different types of samples including total genomic DNA, bacterial cells, symptomatic rice 106 

leaves, as well as discolored and apparently healthy rice seeds were analyzed. Plant material 107 

was ground and macerated before use. To develop a multiplex PCR scheme, individual primer 108 

pairs were first tested against the different samples mentioned above, using annealing 109 

temperatures close to the predicted Tm (Tm ± 5 °C) and with progressive number of PCR 110 

cycles (25 to 35). Primer pairs were then mixed from duplex to quintuplex and PCR 111 

conditions were evaluated, testing annealing temperatures close to the optimal Tm of the 112 

individual primer pairs (Tm ± 3 °C) and various numbers of PCR cycles. At the end, three 113 

promising combinations of annealing temperatures and numbers of PCR cycles were re-114 

evaluated in simplex PCR with the samples mentioned above. The best combination with high 115 
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 6 

specificity and without background amplification was selected as the new diagnostic tool 116 

(Tables 2 to 4). 117 

 118 

Evaluation of the sensitivity of the multiplex PCR scheme using genomics DNA and heat 119 

cells  120 

Simplex and multiplex PCR were then used to evaluate the sensitivity of all the species-121 

specific primer pairs individually or in combination with the genus-specific and the 16 sRNA 122 

primer pairs. Serial dilutions of total genomic DNA and heated bacterial cells were used for 123 

this evaluation. Three Pantoea strains, P. ananatis strain ARC60, P. stewartii strain ARC222, 124 

and P. agglomerans strain CFBP 3615, were used and distilled sterilized served as a negative 125 

control. 126 

 127 

To evaluate the PCR scheme on live plant material, leaves and seeds were artificially infected 128 

with strains of the three Pantoea species. Rice leaves of the cultivar Azucena were inoculated 129 

as described previously [10,11]. To produce contaminated seeds, early maturity panicles of 130 

the Azucena rice cultivar were spray-inoculated with a 5%-gelatinized bacterial solution (106 131 

CFU/mL). Distillated and gelatinized (5%) sterile water served as a negative control. Three 132 

weeks post inoculation, approximately 40% of the grains in the panicles exhibited 133 

discolorations. Panicles inoculated with sterile distilled water showed no symptoms. A total of 134 

five grains whose surface was first treated with a solution of hypochlorite (10%) and ethanol 135 

(70%) and then rinsed with sterile distilled water were ground in 100 mL of sterile distilled 136 

water. After centrifugation, the supernatant was used for PCR. 137 

 138 

Evaluation of the multiplex PCR scheme on a large collection of African Pantoea strains  139 

Bacterial strains used in this study are listed in Additional file 1. In total, 615 Pantoea strains 140 
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from eleven Africans countries (Benin, Burkina Faso, Burundi, Ghana, Ivory Coast, Mali, 141 

Niger, Nigeria, Senegal, Tanzania, Togo) and seven reference strains from USA, Brazil, Spain 142 

and Japan were analysed by the new diagnostic tool. The African strains were isolated from 143 

rice leaves with BB symptoms, and from discolored and apparently healthy rice seeds. The 144 

samples had been collected from 2008 to 2016 in the main rice-growing areas of the 145 

countries. Other bacteria, including Xanthomonas spp, Sphingomonas spp, Escherichia coli, 146 

Erwinia spp, Burkholderia spp, and Pseudomonas spp, were used as controls. The strains 147 

were purified as single colonies, individually grown and preserved as pure cultures following 148 

routine methods [33]. Bacterial colonies were grown for 24 to 48 h on PSA plates containing 149 

10 g peptone, 10 g sucrose, 16 g agar and 1 g glutamic acid per liter. Total genomic DNA was 150 

extracted using the Wizard genomic DNA purification kit (Promega) according to the 151 

manufacturer’s instructions. DNA quality and quantity were evaluated by agarose gel 152 

electrophoresis and spectrophotometry (Nanodrop Technologies, Wilmington, DE).  153 

 154 

 155 

Results 156 

 157 

Development of a diagnostic PCR scheme for plant-associated Pantoea 158 

We aimed at designing diagnostic PCR primers that would target conserved housekeeping 159 

genes. The rationale behind was that these genes should be present in all strains, including 160 

genetic lineages that have not yet been discovered and would not be present in any strain 161 

collection. At the same time, we knew from previous work that sequences of housekeeping 162 

genes are divergent enough to doubtlessly distinguish and identify Pantoea strains at the 163 

species level.  164 

 165 
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A diagnostic Pantoea multiplex PCR method was developed in two steps. First, a complete 166 

inventory of publicly available Pantoea genome sequences was compiled, consisting of nine 167 

P. agglomerans, 14 P. ananatis, and three P. stewartii sequences, totaling to 26 whole 168 

genome sequences (Table 1). Complete coding sequences of four housekeeping genes that 169 

have previously been used for multilocus sequence analyses (MLSA) of Pantoea species [2], 170 

atpD, gyrB, infB, and rpoB, were then extracted and aligned. Sequence regions that were 171 

conserved in all strains of one species but were significantly different in the other two species 172 

were identified manually and chosen to design PCR primers (Table 2). To allow multiplexing, 173 

we made sure that the amplicon sizes would be between 400 and 750 bp and different enough 174 

to be easily distinguishable from each other upon gel electrophoresis (Fig. 1). As a positive 175 

control for the PCR reaction, one primer pair was included that would amplify DNA from all 176 

bacteria belonging to the Pantoea genus, resulting in a smaller amplicon of less than 400 bp. 177 

Finally, as a second control, a primer pair was included that targets the ribosomal 16S rRNA 178 

gene and leads to an amplicon that is larger than the four Pantoea-specific amplicons. 179 

 180 

In the second step, all primer pairs (Table 2) were evaluated, first by simplex PCR and then 181 

by multiplex PCR, with increasing number of primer pairs, as explained in Material and 182 

Methods. Three Pantoea reference strains were used to develop the PCR scheme using 183 

genomic DNA and heat-inactivated bacteria: P. agglomerans strain CFBP 3615, P. ananatis 184 

strain ARC60 and P. stewartii strain ARC222 (Fig. 2). Agarose gel electrophoresis 185 

demonstrated that the multiplex PCR was able to detect and distinguish all three Pantoea 186 

species. Notably, the multiplex PCR scheme was also able to detect two or three Pantoea 187 

species when the corresponding species were present in the same template DNA, as 188 

demonstrated by PCR reactions containing equal amounts of DNA of the different species 189 

(Fig. 2). 190 
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 191 

To simplify the analyses and to avoid isolation of bacteria from plant samples, thus reducing 192 

the costs per sample, the PCR scheme was also evaluated on infected leaf material and 193 

contaminated seeds. As shown in Fig. 3, the multiplex PCR was able to doubtlessly detect all 194 

three Pantoea species in both types of plant samples, as demonstrated for the strains CFBP 195 

3615 (P. agglomerans), ARC60 (P. ananatis), and ARC222 (P. stewartii). At the end, a 196 

robust PCR protocol was available that was able to amplify DNA from total genomic DNA, 197 

bacterial cells, symptomatic rice leaves and from infected rice seeds.  198 

 199 

Evaluation of the sensitivity of the multiplex PCR scheme using genomic DNA and 200 

heated cell suspensions 201 

The evaluation by simplex and multiplex PCR showed that all the species-specific primers 202 

were very sensitive individually or in combination with the genus-specific and the 16 sRNA 203 

universal primers (Fig. 4). The most sensitive primer pair in simplex PCR was the one 204 

targeting P. stewartii with a detection limit of 5 pg under our experimental conditions, 205 

followed by the P. agglomerans-specific primer pair (detection limit of 50 pg) and the 206 

P. ananatis-specific primer pair (detection limit of 0.5 ng). A similar trend was observed in 207 

the multiplex PCR on genomic DNA, with the same detection limit as in simplex PCR for 208 

P. stewartii and P. ananatis and a tenfold less sensitivity for P. agglomerans.  209 

 210 

When heated bacterial cell suspensions were used as template, the P. ananatis-specific primer 211 

pair was the most sensitive allowing detection of 103 CFU/mL, while the other two primer 212 

pairs were able to detect 104 CFU/mL. However, when all five primers pairs were used in 213 

multiplex, the sensitivity was very similar for all three species with a detection limit of 214 

approximately 104 CFU/mL. 215 
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 216 

Evaluation of the multiplex PCR scheme on a large collection of African Pantoea strains  217 

Because recent surveys had indicated that Pantoea species could be responsible for many 218 

unsolved infections of rice fields in sub-Saharan Africa [10,11], we screened a large 219 

collection of isolates. We first re-evaluated a few African strains that had been identified as 220 

P. ananatis (ARC22, ARC60, ARC651) and P. stewartii (ARC229, ARC570, ARC646), 221 

using species-specific and the genus-specific PCR primers [10,11]. The multiplex PCR 222 

scheme confirmed their previous taxonomic classification. Next, we screened a large 223 

collection of African bacterial isolates from rice samples (>1000 strains) among which 609 224 

strains were found to belong to the genus Pantoea (Additional file 1). Specifically, this work 225 

diagnosed 41 P. agglomerans strains from eight countries (Benin, Ghana, Mali, Niger, 226 

Nigeria, Senegal, Tanzania, Togo), 79 P. ananatis strains from nine countries (Benin, Burkina 227 

Faso, Burundi, Mali, Niger, Nigeria, Senegal, Tanzania, Togo), 269 P. stewartii strains from 228 

nine countries (Benin, Burkina Faso, Ivory Coast, Mali, Niger, Nigeria, Senegal, Tanzania, 229 

Togo) and 220 Pantoea sp. strains from ten countries (Benin, Burundi, Ghana, Ivory Coast, 230 

Mali, Niger, Nigeria, Senegal, Tanzania, Togo) (Additional file 1). This result provided first 231 

insights on the presence and prevalence of three important Pantoea species in these eleven 232 

African countries.  233 

 234 

 235 

Discussion 236 

 237 

Bacterial infections by Pantoea spp. are recognized as being responsible for several diseases 238 

of plants, including important crop plants such as rice, maize, sorghum, onion and melon [34–239 
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43]. BB of rice caused by species of Pantoea were reported in several countries and include 240 

Benin, Togo, Korea, India, Australia, China, Italy, Venezuela, and Russia [10,11,40,44–49].  241 

 242 

Given the fact that more than 25 species of Pantoea are currently known and among them 243 

several species can infect plants, efficient diagnostic tools are highly demanded by plant 244 

pathologists and extension workers. Some plant diseases were attributed to only three species 245 

of Pantoea, namely P. agglomerans, P. ananatis and P. stewartii, which can therefore be 246 

considered as the major Pantoea species infecting plants. For their diagnosis, several PCR 247 

methods are available and have been used but some of them produced amplicons with others 248 

species as well [14,50,51], while others are not well reproducible or are inaccessible in typical 249 

sub-Saharan laboratory due to specific equipment requirements and/or high costs of some 250 

reagents [14,17,18]. Notably, most assays target only one Pantoea species or subspecies. For 251 

instance, being of major concern, P. stewartii subsp. stewartii causing Stewart’s bacterial wilt 252 

can be detected by several methods but none of them can at the same time identify other 253 

bacteria of the genus Pantoea [14,16,18,52,53]. To the best of our knowledge, no robust 254 

diagnostic scheme exists that can specifically detect all three major Pantoea species that 255 

infect plants. 256 

 257 

Based on whole genome sequences, we developed a new multiplex PCR scheme that can 258 

specifically detect the three major species of plant-pathogenic Pantoea, P. agglomerans, 259 

P. ananatis and P. stewartii. Different strategies can be followed when developing such a 260 

multiplex scheme using available whole-genome sequences. One possibility is to automatize 261 

the procedure by identifying genomic regions that are shared among a set of strains (e.g. the 262 

target species) and which are absent in another set of strains (non-target species). For 263 

instance, such an approach was used for the development of a Xanthomonas oryzae-specific 264 
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multiplex PCR scheme that can differentiate the two pathovars oryzae and oryzicola [9]. The 265 

problem with this approach is that it might identify non-essential, often hypothetical genes as 266 

targets for the primer design. While present in the training set, it is hard to predict if these 267 

non-essential genes will be present and conserved in other, hitherto uncharacterized strains, 268 

especially when they originate from other geographical zones and/or belong to more distant 269 

genetic lineages.  270 

 271 

Here, we targeted housekeeping genes, which are conserved throughout the genus, and relied 272 

on lineage (species)-specific sequence polymorphisms. This approach is considered as very 273 

robust but it cannot be ruled out that recombination events among strains from different 274 

species could undermine the universality of these primer pairs. Yet, we did not find any 275 

evidence for such events in any of the sequenced Pantoea strains that were analysed, 276 

including environmental isolates and strains isolated from human and plant samples. 277 

Nevertheless, because this study was focused on isolates from African rice leaves and seeds 278 

and only included a few reference strains from other continents (Additional file 1), it might be 279 

of interest to evaluate the new multiplex PCR tool on Pantoea strains isolated from other 280 

organisms (others plants, insects, other animals, humans) and from environmental samples. 281 

 282 

To reduce the costs and handling time, we generated a multiplex PCR scheme that can work 283 

with both purified genomic DNA or with bacterial lysates. In both cases, sufficient specificity 284 

and sensitivity were obtained allowing detection of as low as 0.5 ng of DNA or 104 CFU/mL 285 

for all three Pantoea species. Such a simple scheme will be of specific interest to 286 

phytopathologists, especially in Africa and other less-developed regions. Indeed, diseases due 287 

to infections by Pantoea appear to emerge in Africa as recently documented for Benin and 288 

Togo [10,11]. In this study, the presence of the three major plant-pathogenic Pantoea species 289 
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has been demonstrated for eleven African countries. The fact that most of the BB-like 290 

symptomatic rice samples proved to contain a high number of Pantoea bacteria suggests that 291 

infection by Pantoea is an underestimated source for BB symptoms and might be widespread 292 

in Africa. However, more rigorous sampling schemes are required to determine the incidence 293 

and prevalence of Pantoea in various rice-growing areas in Africa. 294 

 295 

Among the 609 Pantoea isolates, we detected 220 strains (36.1%; additional file 1) of 296 

Pantoea sp. that could not be assigned to any of the three species that are specifically targeted 297 

by the multiplex PCR scheme. This is an interesting observation that shows that the genus-298 

specific primer pair does not only serve as an internal positive control of the multiplex 299 

scheme but that it has its own diagnostic value. Obviously, other species of Pantoea are 300 

present in Africa and are likely to cause disease of rice plants as well. Yet, it is still unknown 301 

whether or not this group of isolates contains other rice pathogenic species. Pathogenicity 302 

assays need to confirm or disprove their status as novel pathogens. Future work will address 303 

these isolates, using MLSA and whole genome sequencing. 304 

 305 

While screening a large collection of bacterial isolates from rice samples, we also found 306 

strains that neither belonged to Pantoea nor to Xanthomonas (data not shown). Some of them 307 

were Sphingomonas strains [12], while others may represent new species and genera, which 308 

have so far not been connected to rice diseases. These isolates will be further studied by 16S 309 

rRNA analysis. From this study, it was concluded that the number of bacterial species that 310 

affect rice plants in Africa is certainly larger than previously thought.  311 

 312 

 313 

Conclusion 314 
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 315 

A new multiplex PCR scheme was developed to diagnose plant-pathogenic Pantoea spp. This 316 

tool enabled the efficient confirmation of the presence of Pantoea species (P. ananatis and 317 

P. stewartii) in Benin and Togo, as reported previously, and in several other African countries 318 

(Burkina Faso, Burundi, Ghana, Ivory Coast, Mali, Niger, Nigeria, Senegal, Tanzania). 319 

Moreover, we found evidence for the presence of P. agglomerans and other species of 320 

Pantoea on rice samples from several African countries. This new diagnostic tool will be very 321 

useful for crop protection services.  322 

 323 

 324 
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Table 1: List of Pantoea genome sequences used for primers design. 602 

 603 

Species Strain Origin Country Year Accession number Reference 

P. agglomerans 4 Wheat 

seed 

Canada 2012 JPOT01000005 [54] 

P. agglomerans 190 Soil South 

Korea 

2005 JNGC01000002 [55] 

P. agglomerans DAPP-

PG734 

Olive knot Italy 2008 JNVA01000008 [56] 

P. agglomerans Eh318 Stem of 

apple 

USA  AXOF01000028 [57] 

P. agglomerans IG1    BAEF01000016 [58] 

P. agglomerans LMAE-2 Sediment  Chile 2010 JWLQ01000032 [59] 

P. agglomerans MP2 Termites South 

Africa 

2009 JPKQ01000009 [60] 

P. agglomerans RIT273 Willow 

(Salix sp.) 

USA 2013 ASJI01000010 [61] 

P. agglomerans Tx10 Sputum of 

cystic 

fibrosis  

USA 2011 ASJI01000010 [62] 

P. ananatis AJ13355  Japan  AP012032 [63] 

P. ananatis B1-9     CAEJ01000016 [64] 

P. ananatis BD442 Maize 

stalk rot 

South 

Africa 

2004 JMJL01000008 [65] 

P. ananatis BRT175 Strawberry 

epiphye 

  ASJH01000041 [62] 

P. ananatis CFH 7-1 Cotton USA 2011 LFLX01000002 [66] 
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boll 

disease  

P. ananatis LMG 

20103 

Blight and 

dieback of 

Eucalyptus 

South 

Africa 

 CP001875 [67] 

P. ananatis LMG 

2665 

Pineapple 

soft rot 

Philippines 1928 JMJJ01000009 [68] 

P. ananatis LMG 

5342 

Human 

wound 

Phillipines 1928 HE617160 [69] 

P. ananatis PA13 Rice grain Korea  CP003085 [70] 

P. ananatis PA4 Onion 

seed  

South 

Africa 

2004 JMJK01000009 [65] 

P. ananatis S6 Maize 

seed 

  CVNF01000001 [71] 

P. ananatis S7 Maize 

seed 

  CVNG01000001 [71] 

P. ananatis S8 Maize 

seed 

  CVNH01000001 [71] 

P. ananatis Sd-1 Rice seed China  AZTE01000008 [72] 

P. stewartii DC283 Maize USA 1967 AHIE01000032 [73] 

P. stewartii M009 Waterfall Malaysia 2013 JRWI01000004 [74] 

P. stewartii M073a Waterfall Malaysia 2013 JSXF01000010 [75] 

 604 
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Table 2: List of PCR primers developed for the Pantoea mPCR along with the sequences of 606 

the GenBank accessions and the corresponding strains. 607 

 608 

Primer name Target species Sequence Size (bp) Strain 

PANAG_infB_fwd P. agglomerans 5’-GATGACGARGCCATGCTGC 730 P. agglomerans 

(CFBP 3615) PANAG_infB_rev 5’-TGTCCGGCGTGCCGGCTG 

PANAN_gyrB_fwd P. ananatis 5’-GATGACGARGCCATGCTGC 423 P. ananatis 

(ARC195) PANAN_gyrB_rev 5’-GATCTTGCGGTATTCGCCAC 

PANST_rpoB_fwd P. stewartii 5’-CACCGGTGAACTGATTATCG 539 P. stewartii 

(ARC204) PANST_rpoB_rev 5’-GTCCTGAGGCATCAATGTGT 

PANsp_atpD_fwd Pantoea sp. 5’-GAGGGTAACGACTTCTACCAC 330 P. stewartii 

(ARC222) 

P. agglomerans 

(CFBP 3615) 

P. ananatis 

(ARC235) 

PANsp_atpD_rev 5’-CTGTACGGAGGTGATTGAAC 

16S_27F Eubacteria 5’-AGAGTTTGATCMTGGCTCAG 920 Eubacteria 

16S_907R 5’-CCGTCAATTCMTTTRAGTTT 

 609 
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Table 3: Composition of the multiplex polymerase chain reaction. 611 

 612 

PCR component Volume per reaction (µL) Final concentration 

Type of template Purified 

DNA 

Bacterial cells  

Buffer (5x) 5.0 5.0 1x 

dNTPs (2.5 mM each) 0.5 0.5 50 µM each 

Oligonucleotides (10 µM) 0.4 0.4 0.16 µM each 

Takara ExTaqTM (5 units/µL) 0.1 0.1 0.5 U 

Template 2.0 5.0  

Sterile nanopure water 

(Promega) 

13.4 10.4  

Total 25.0 25.0  

 613 
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Table 4: Reaction parameters of the multiplex PCR thermocycler program. 615 

 616 

Step Phase Time Temperature (oC) 

1 Initial denaturation 3 min 94 

2 Denaturation 30 sec 94 

3 Annealing 30 sec 58 

4 Extension 2 min 72 

5 Cycling (steps 2-4) 30 cycles  

6 Final extension 10 min 72 

7 Soak/hold ∞ 4-10 

8 End   

 617 
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Legends to figures 619 

 620 

Figure 1: Schematic representation of the multiplex PCR scheme. Sizes of the five expected 621 

PCR amplicons are indicated in the middle and their expected migration in a 1.5% TBE 622 

agarose gel is shown on the left side. Diagnostic band patterns for the three plant-associated 623 

Pantoea species are shown on the right side. 624 

 625 

Figure 2: Detection of three Pantoea species by multiplex PCR, using heated cell suspensions 626 

or genomic DNA as template. Three reference strains were used as representatives for the 627 

three Pantoea species, P. ananatis strain ARC60, P. stewartii strain ARC222, and 628 

P. agglomerans strain CFBP 3615. 629 

Lanes 1 & 5, pool of heated cells of the three Pantoea species; lane 2, P. ananatis; lane 3, 630 

P. stewartii; lane 4, pool of genomic DNA from P. ananatis and P. agglomerans;  631 

 632 

Figure 3: Detection of three Pantoea species in artificially infected rice leaves and in 633 

contaminated seeds. The following Pantoea strains were used: P. ananatis strain ARC60, 634 

P. stewartii strain ARC222, and P. agglomerans strain CFBP 3615. 635 

Lane 1, P. ananatis (leaf sample); lane 2, P. ananatis (seed); lane 3, P. stewartii (leaf); lane 4, 636 

P. stewartii (seed); lane 5, P. agglomerans (leaf); lane 6, P. agglomerans (seed); lane 7, A 637 

yellow bacterial colony isolated from rice seeds; lane 8, water.  638 

 639 

Figure 4: Sensitivity of PCR amplification in simplex and multiplex PCR. Serial dilutions of 640 

total genomic DNA and heated bacterial cells were evaluated. I, simplex PCR with bacterial 641 

cells; II, multiplex PCR with bacterial cells; III, simplex PCR with genomic DNA; IV 642 

multiplex PCR with genomic DNA. Three Pantoea strains were used: P. ananatis strain 643 
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ARC60 (A), P. stewartii strain ARC222 (B), and P. agglomerans strain CFBP 3615 (C). 644 

Simplex PCR were performed with the corresponding, species-specific primer pairs, 645 

PANAN_gyrB for P. ananatis, PANST_rpoB for P. stewartii, and PANAG_infB for 646 

P. agglomerans. The multiplex PCR included all five primer pairs. 647 

The following amounts of bacteria or genomic DNA were used as templates for the PCR, 648 

corresponding to 10-fold serial dilutions: Lanes 1 to 12 106 CFU/mL, 105 CFU/mL, 104 649 

CFU/mL, 103 CFU/mL, 102 CFU/mL, 101 CFU/mL, 100 CFU/mL, 10-1 CFU/mL, 10-2 650 

CFU/ml, 10-3 CFU/ml, 10-4 CFU/mL and water; lanes 12 to 24, 50 ng, 5 ng, 0.5 ng, 50 pg, 5 651 

pg, 0.5 pg, 50 fg, 5 fg, 0.5 fg, 50 ag, 5 ag and water; M, molecular size marker (1 kb DNA 652 

ladder, Promega). 653 

 654 

Additional files 655 

 656 

Additional file 1: List of bacterial strains used to evaluate the multiplex PCR scheme.  657 

	658 
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