12 research outputs found

    The Barents area changes – How will Finland adapt? (Barentsin alue muuttuu – miten Suomi sopeutuu?)

    Get PDF
    The cumulative impacts of environmental, climatic and societal changes and their consequences will affect the development of the Arctic region in the coming decades. Adaptation to these changes will require measures of all the actors in the region. Finland, part of the Euro-Arctic region, will adapt to these changes in a variety of ways. The Barents area is unique in the Arctic in being a multicultural, relatively densely populated area with well-developed industries and infrastructure. This report examines adaptation to changes and their consequences in the Barents area in terms of governance and Finland’s capacities to adapt. The aim has been to produce comprehensive information from the Finnish perspective for local and national decision-makers about long-term changes in the region, their expected impacts and adaptation options, and to support decision-making that will advance adaptation. The report includes recommendations. This report is based on the contribution of Finnish experts to an Arctic Council and Arctic Monitoring and Assessment Programme (AMAP) project titled ”Adaptation Actions for a Changing Arctic” (AACA). The project has prepared a pilot report by Nordic and Russian experts on the Barents area in English on changes, their impacts and adaptation options. The report will be published in 2017 (AMAP 2017)

    Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment

    No full text
    Microbial communities in deep subsurface environments comprise a large portion of Earth’s biomass, but the microbial activity in these habitats is largely unknown. Here, we studied how microorganisms from two isolated groundwater fractures at 180 and 500 m depths of the Outokumpu Deep Drillhole (Finland) responded to methane or methanol amendment, in the presence or absence of sulfate as an additional electron acceptor. Methane is a plausible intermediate in the deep subsurface carbon cycle, and electron acceptors such as sulfate are critical components for oxidation processes. In fact, the majority of the available carbon in the Outokumpu deep biosphere is present as methane. Methanol is an intermediate of methane oxidation, but may also be produced through degradation of organic matter. The fracture fluid samples were incubated in vitro with methane or methanol in the presence or absence of sulfate as electron acceptor. The metabolic response of microbial communities was measured by staining the microbial cells with fluorescent redox sensitive dye combined with flow cytometry, and DNA or cDNA-derived amplicon sequencing. The microbial community of the fracture zone at the 180 m depth was originally considerably more respiratory active and 10-fold more numerous (10(5) cells ml(-1) at 180 m depth and 10(4) cells ml(-1) at 500 m depth) than the community of the fracture zone at the 500 m. However, the dormant microbial community at the 500 m depth rapidly reactivated their transcription and respiration systems in the presence of methane or methanol, whereas in the shallower fracture zone only a small sub-population was able to utilize the newly available carbon source. In addition, the composition of substrate activated microbial communities differed at both depths from original microbial communities. The results demonstrate that OTUs representing minor groups of the total microbial communities play an important role when microbial communities face changes in environmental conditions

    Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden

    Get PDF
    Fractured rocks of impact craters may be suitable hosts for deep microbial communities on Earth and potentially other terrestrial planets, yet direct evidence remains elusive. Here, we present a study of the largest crater of Europe, the Devonian Siljan structure, showing that impact structures can be important unexplored hosts for long-term deep microbial activity. Secondary carbonate minerals dated to 80 ± 5 to 22 ± 3 million years, and thus postdating the impact by more than 300 million years, have isotopic signatures revealing both microbial methanogenesis and anaerobic oxidation of methane in the bedrock. Hydrocarbons mobilized from matured shale source rocks were utilized by subsurface microorganisms, leading to accumulation of microbial methane mixed with a thermogenic and possibly a minor abiotic gas fraction beneath a sedimentary cap rock at the crater rim. These new insights into crater hosted gas accumulation and microbial activity have implications for understanding the astrobiological consequences of impacts
    corecore