704 research outputs found

    Parallel Processing Of Visual And Motion Saliency From Real Time Video

    Get PDF
    Extracting moving and salient objects from videos is important for many applications like surveillance and video retargeting .The proposed framework extract foreground objects of interest without any user interaction or the use of any training data(Unsupervised Learning) .To separate foreground and background regions within and across video frames, the proposed method utilizes visual and motion saliency information extracted from the input video. The Smoothing filter is extremely helpful in characterizing fundamental image constituents, i.e. salient edges and can simultaneously reduce insignificant details, thus producing more accurate boundary information. Our proposed model uses smoothing filter to reduce the effect of noise and achieve a better performance. Proposed system uses real time video data input as well as offline data to process using parallel processing technique. A conditional random field can be applied to effectively combine the saliency induced features. To evaluate the performance of saliency detection methods, the precision-recall rate and F-measures are utilized to reliably compare the extracted saliency information. DOI: 10.17762/ijritcc2321-8169.150317

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    Face recognition along with DWT based steganography for net banking

    Get PDF
    Face recognition technique now a days is emerging as the most significant and challenging aspects in terms of security for identification of images in various fields like banking, police records, biometric etc. other than an individual’s thumb and documented identification proofs. Till date for efficient net banking to be initiated, one has to provide the appropriate user name and password for purpose of authentication. This paper introduces a more reliable authentication of an individual by providing Face Image along with User Name and Password to the system. In this an individual’s face is identified by biometric authentication support with which, only a person whose account is, can access it. However while transferring this sensitive data of user image, from client machine to bank server it has to be protected from hackers and intruders from manhandling it, hence it is transferred using covert communication called Wavelet Decomposition based steganography

    Smart Approach for Public Transport

    Full text link
    This paper is to provide public a Smart Assistance in Public Transport System. The paper is to be implemented for public bus (for PMTs in Pune). It has the entire smart assistance system required for public security and safety. The smart system includes safety form rash driving as well. It has accident detection and monitoring facility. It also has user friendly application for user to track bus on smart their phones. The smart system designed has both online (GPS) and offline (GSM) for user friendly service. It allows user to save its time by acknowledging no. of persons present in the bus as well as no. of seats available in the bus along with the current and next stop acknowledgment with its arrival timings. It also has ramp facility for handicap people. The system also many additions feature to make public transport system an intelligent and easy to use system so that public can take smart advantage of it. The system is specially designed for Smart Cities as it\u27s the recent development plan

    A Survey on Review Based Recommendation System

    Get PDF
    The advances in internet technology have resulted in the generation of huge amount of data called as Big Data. Recommendation system is a widely used technique for the filtering the huge amount of data and providing recommendations to users according to their interest. Without taking previous user interest into consideration, the traditional recommender system does not provide efficient solutions to the users. In this paper, we introduce recommender system to solve the above-described problems. The proposed recommender system will take into consideration previous user’s interest and active user interest and by calculating similarity it will to provide recommendations to active user

    Structural Optimization Using the Newton Modified Barrier Method

    Get PDF
    The Newton Modified Barrier Method (NMBM) is applied to structural optimization problems with large a number of design variables and constraints. This nonlinear mathematical programming algorithm was based on the Modified Barrier Function (MBF) theory and the Newton method for unconstrained optimization. The distinctive feature of the NMBM method is the rate of convergence that is due to the fact that the design remains in the Newton area after each Lagrange multiplier update. This convergence characteristic is illustrated by application to structural problems with a varying number of design variables and constraints. The results are compared with those obtained by optimality criteria (OC) methods and by the ASTROS program

    Real-time nondestructive citrus fruit quality monitoring system: development and laboratory testing

    Get PDF
    This study reports on the development and laboratory testing of the This study reports on the development and laboratory testing of the nondestructive citrus fruit quality monitoring system.  Prototype system consists of a light detection and ranging (LIDAR) and visible-near infrared spectroscopy sensors installed on an inclined conveyer for real-time fruit size and total soluble solids (TSS) measurement respectively.  Laboratory test results revealed that the developed system is applicable for instantaneous fruit size (R2 = 0.912) and TSS (R2 = 0.677, standard error of prediction = 0.48 °Brix) determination.  Future applications of such system would be in precision farming for in-field orange quality determination during the harvest and for row specific yield mapping and monitoring.    Keywords: LIDAR sensor, visible-near infrared spectroscopy, fruit size, sugar conten

    Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs?

    Get PDF
    In this paper we show a reduction from the Unique Games problem to the problem of approximating MAX-CUT to within a factor of αGW + ∈, for all ∈ \u3e 0; here αGW ≈ .878567 denotes the approximation ratio achieved by the Goemans-Williamson algorithm [26]. This implies that if the Unique Games Conjecture of Khot [37] holds then the Goemans-Williamson approximation algorithm is optimal. Our result indicates that the geometric nature of the Goemans-Williamson algorithm might be intrinsic to the MAX-CUT problem. Our reduction relies on a theorem we call Majority Is Stablest. This was introduced as a conjecture in the original version of this paper, and was subsequently confirmed in [45]. A stronger version of this conjecture called Plurality Is Stablest is still open, although [45] contains a proof of an asymptotic version of it. Our techniques extend to several other two-variable constraint satisfaction problems. In particular, subject to the Unique Games Conjecture, we show tight or nearly tight hardness results for MAX-2SAT, MAX-q-CUT, and MAX-2LIN(q). For MAX-2SAT we show approximation hardness up to a factor of roughly .943. This nearly matches the .940 approximation algorithm of Lewin, Livnat, and Zwick [41]. Furthermore, we show that our .943... factor is actually tight for a slightly restricted version of MAX-2SAT. For MAX-q-CUT we show a hardness factor which asymptotically (for large q) matches the approximation factor achieved by Frieze and Jerrum [25], namely 1 − 1/q + 2(ln q)/q2 . For MAX-2LIN(q) we show hardness of distinguishing between instances which are (1−∈)-satisfiable and those which are not even, roughly, (q−∈/2)-satisfiable. These parameters almost match those achieved by the recent algorithm of Charikar, Makarychev, and Makarychev [10]. The hardness result holds even for instances in which all equations are of the form xi − xj = c. At a more qualitative level, this result also implies that 1 − ∈ vs. ∈ hardness for MAX-2LIN(q) is equivalent to the Unique Games Conjecture

    Quantum matchgate computations and linear threshold gates

    Full text link
    The theory of matchgates is of interest in various areas in physics and computer science. Matchgates occur in e.g. the study of fermions and spin chains, in the theory of holographic algorithms and in several recent works in quantum computation. In this paper we completely characterize the class of boolean functions computable by unitary two-qubit matchgate circuits with some probability of success. We show that this class precisely coincides with that of the linear threshold gates. The latter is a fundamental family which appears in several fields, such as the study of neural networks. Using the above characterization, we further show that the power of matchgate circuits is surprisingly trivial in those cases where the computation is to succeed with high probability. In particular, the only functions that are matchgate-computable with success probability greater than 3/4 are functions depending on only a single bit of the input
    • …
    corecore