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Abstract The Newton Modified Barrier Method (NMBM) is
applied to structural optimization problems with lazge a number
of design variables and constraints. This nonlinear mathematical
programming algorithm wu based on the Modified Barrier Func-
tion (MBF) theory and the Newton method for unconstrained
optimization. The distinctive feature of the NMBM method is
the rate of convergence that is due to the fact that the design
remains in the Newton area after each Lagraage multiplier up-
date. This convergence characteristic is illustrated by application
to structural problems with a varying number of design variables
and constraints. The results are compared with those obtained by
optimality criteria (OC) methods and by the ASTROS program.

1 Introduction

The problems facing designers today tend to be complex and

often novel with limited past experience to guide the designer
to satisfy conflicting requirements. The computer automated
analysis and simulation capabilities have reached a very high
level of sophistication and power to provide detailed infor-
mation about the response behaviour of the design. These
capabilities, however, often provide little information as to
how to change a complex design to improve its behaviour or
its cost measure, or both. New automated optimization ap-

proaches are needed to provide guidance for improving the
preliminary and for fine tuning the final designs.

The use of finite element methods in structural analysis
leads to a large number of size variables. It is often conve-
nient to treat each element size as an independent variable

instead of developing a variable linking procedure to reduce
the number of variables, or to promote smoothness of member
size variations. Such reductions of problem size are, however,

always advantageous from a computational point of view.
The derivations of OC methods (see Berke and Khot 1987;

Khot 1981) are associated with structural energy theorems
that are involved in stiffness related optimization problems.

These energy theorems assure separability and the associated

simplifications. The number of needed iterations depends not
on the number of design variables but on low sensitivity of
internal forces to changes in member sizes. These OC meth-
ods have been shown to be extremely efficient but only for
special cases of structural constraints. With the increasing
importance of multidisciplinary design requirements special-

ized algorithms are becoming less attractive for the emerging
complexities.

With the increasing speed of computers, a major part of
the importance of computational efficiency needed for opti-
mization iterations is diminishing. In such a computational
environment, developments turn towards robust optirmzation
methods based on sound mathematical foundations.

The NMBM method applied here initially only to struc-

tural problems promises to satisfy these requirements. Its
performance is compared here with that of OC and the AS-
TROS programs for problems that satisfy the conditions of
the applicability of OC methods. Separability and the lin-
ear objective function are not necessary conditions for the

proposed method, but are believed to improve convergence
behaviour. Work is in progress to compare this approach to

other algorithms in the multidisciplinary problem setting us-
ing COMETBOARD, a testbed for optimization algorithms
(Gendy et al. 1994).

The NMBM is a numerical realization of the general

modified barrier method (MBM) for constrained optimiza-
tion (Polyak 1992a). The barrier function (MBF) used in

this method possesses the best properties of the classical La-
grangian and classical barrier functions (CBF) (see Fiacco
and McCormick 1968), and at the same time eliminates their
main drawbacks. The MBF retains the best properties of the

augmented Lagrangian (see Powell 19{59; Rockafellar 1973;
Bertsekas 1982) and also develops new important qualities.
The properties of MBF near the primal and dual solution
make it possible to avoid illconditioning of the CBF's Hes-
sian. This makes the numerical process more stable and ira-
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proves the rate of convergence. The application of MBF-type
methods for solving truss topology design problems (Ben-Tal
et al. 1992) leads us to believe that it has good potential for
also solving large-scale structural optimization problems.

The next sections give the formulation of the structural
optimization problem using the NMBM approach, followed
by presentations of MBF, MBM, NMBM in turn. In the last
section, three truss structures using NMBM are presented.
The convergence characteristics are compared with solutions

obtained by ASTROS (Neill and Herendeen 1993) and by an
OC method.

2 Structural optimization problem

The structuraloptimizationproblem,which we are goingto
consider,can be statedasfollows:

n

W" = minW = Zpitizi, (1)
i=l

subject to constraints
n

gi(_) =c i -rj = _%C 1-ej < 0, j = i ..... m, (2)
i=l

and

zi >_O, i = l ..... m. (3)

The z i are the design variables, Pi is the specific weight, and
t i is a function of the geometry of the elements. Parame-

ters Qji depend on the nature of the constraints and are a

function of the sensitivity, and ej and _j are the actual and
limited values of the j-th constraints.

Before we start our analysis, let us rewrite the problem
(1)-(3) in a more convenient manner for further consideration.

We introduce the reciprocal variable._ Yi = zi'l, i =
1.... ,n and the vector y = (y! .... ,Yn). We also set
r i = Pi£i, so that the objective function (1) can be rewritten
as follows:

w=E,,.;-'1,
i_--1

and for the constraints (2) we have
n

gj(y) -- "dj -- Z QJiyi _- O, j - 1 ..... m.
i--1

The objective function
n

w- E'i . 1
i----1

is a barrier type function; therefore, if the initial approxima-

tion yO _ (yl0 .... , yO) is inside the feasible set, i.e. all yO > O,
then the minimization procedure will keep the variables pos-
itive.

Let Q -II Qji I[,J -- 1..... m, i -- 1..... n, be an

m x n matrix with elements Qji; r = (r t .... , rn) and y-1 =

(yl 1 .... ,9_-1) the n-dimensional vectors, A = (A1,... ,Am)
an m-dimensional vector of Lagrange multipliers, and g(y) =

(El - EL1 Qtiyi .... ,'din - EL1 Qrn,Yi) = "6- Qy an m-
dimensional vector function. Then the problem (1)-(3) can
be written as follows:

n

W" = f(.*) = min f(.) = min(r, y-l) = E ri"i "1' (4)
i=1

subject to the constraints

g(y) ="6- Qy >_0. (5)

For structuraldesignproblems,thefeasiblesetthatisdefined

by (5), namely,

I2 = {y: gj(y) >_0, j = 1.... ,m},

has a nonempty interior; i.e. there exists y0 > 0 such that

gj(y0) >0, j= 1..... m. (6)

Therefore, the Karush-Kuhn-Tucker (KKT) conditions hold
true.

Let R [diag r n= lit=/ be a diagonal matrix with entries
ri, i = 1 ..... n and let L(y,A) be the Lagrangian for the
problem (4)-(5)

}TI

L(y,A) = f(y) - Z Ajgj(y) = (r,y -1) - (A,E- Qy),
j=l

then, for any KKT pair (y, A), we have,

VyL(y,A) -- -Ry -2 + AQ = 0, (7)

-6- Qy > 0,(A,-6- Qy) = 0, A > 0. (8)

The modifiedbarriermethod, which we describebelow,gen-

eratesprimal and dual sequencesthat converge to a KKT

pair(y*,A*).

Due to the natureofthe structuraldesignproblem,the

feasibleset/2isbounded. Therefore,the objectivefunction

f(y) isstronglyconvex on /2. Thus the solutiony* ofthe

problem (4)-(5)isunique,whilethesetofLagrange multipli-

ersA thatsatisfies(7)and (8)isbounded due tothe Slater

condition(8).
Inthe nextsection,we willintroducethemodifiedbarrier

functionforthe structuraloptimizationproblem (4)-(5). !
3 Modified barrier function

Let k > 0 be a scalingparameter.The constraints(5)can be ._
rewrittenin the followingform: {i

k-lln[kgj(y)+ 1]>0, j= 1,...,m. (9)

We shall assume that In t = -oo for t < 0.

The modified barrier function is a classical Lagrangian for

the equivalent=npr°blem_ _(4)k-landm(9) 1]. (10) i_ Ir(y, _, k) _ "_., _ _ _i lnikgi(y) +
ill _ffil

The MBF theory and the corresponding methods for nonlin- i
ear and linear optimization have been developed by Polyak Y

(1992a,b).For the sakeofcompleteness,we shallspecifythe

main MBF propertiesforthestructuraloptimizationproblem ,_
(4)-(5).

Let Y = [diag Yi]i-_l be a diagonal matrix in n-
dimensional space with entries .i and A= [diag . mAj]i=I be a
diagonalmatrixinm-dimensionalspacewith entriesAj.

For any KKT pair(y',A*) thatsatisfies(7)and (8),and

any k > 0, the following properties are true:

PI * F(y',A*,k) = f0(Y*) = E ri("7 )-I'

i--1

P2 .VyF(y*, A*,k)= VyL(y*, A*) = -R(y*)-2+A'Q = 0

P3 • r2yF(y *, A*, k) = 2R(Y') -3 + kQTA*Q,
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_here (y*)-" = [(y;)-2 ..... (y;)-2] is a vector in R'_ and
(y.)-3 • . -:_ ,1= [dlag(yi ) ]i=l is a diagonal matrix with entries

(y*)-_.
The properties P1-P3 show that in contrast to CBF, the

MBF as well as its first and second derivatives exist at the pri-

mal solution and possess important properties in the neigh-

bourhood of the primal-dual solution.

The optimal value of the objective function coincides with

the MBF value for any KKT pair (y', A') and y* is a unique

minimizer of F(y, A*, k) for any k > 0.

Taking into account that during the minimization proce-

dure the vector y is positive, the MBF F(y, A, k) is strongly

convex and smooth in an extended feasible set, -Qk = {Y

gj(y) _> -k-l,i = 1.... ,m}.

The MBF properties enable us to develop a method

which converges to the primal-dual solution for any positive

parameter k > 0 (see Jensen and Polyak 1994). This means

that in contrast to the interior point methods, that are based

on classical barrier functions (see Gonzaga 1992), the MBF

approach provides convergence without increasing the barrier

parameter unboundedly.

Therefore, the condition number of the MBF Hessian is

stable from the beginning to the end of the process. It con-

tributes to both the rate of convergence and numerical sta-

bility. It also makes more efficient use of Newton's method

for unconstrained minimization F(y, A, k) in y, which is the

key element in the numerical realization of the MBF method

that we are going to describe in the next section.

4 Modified barrier methods

The MBF method consists of unconstrained minimization

F(y,A,k) in y and updating the vector of Lagrange mul-

tipliersA. The barrierparameter k > _ can be fixed or one

can change it after every Lagrange multiplierupdate. We

willnow describe two versions of the MBF method, starting

with the permanent parameter version.

We start with positive vector y0 which belongs to the

extended feasibleset,i.e.

gj(y0) >-k -1, j= 1..... m. (11)

It is worth mentioning that for any positive vector y0, one

can find such k > 0 that inequalities(11) willbe satisfied.

Thus, finding the initialprimal approximation does not

require extra computational work. As far as the initialvec-

tor of Lagrange multipliersisconcerned, we can choose any

positivevector A 0 = (A? ....,A0m).

Let k > 0 be fixed,y E O k, and A 0 = (I.....I) G R n.

Assume that the approximations yS and A s have been found

already. Then the next approximations for yS+1 and A s+1

are found by the formulae

yS+l :F(yS+l,AS,k) = min{F(y,A s,k) {y E Rn}, (12)

and

As+I :A_ +1 =A_[kgj(y s+l)+l] -1, j= 1.... ,m. (13)

From (II) and (12), we have

VyF(y s+l,A s ,k) = VyL(y s+l,A s+l ) = 0, (14)

i.e. the unconstrained minimum of the MBF F(y, A s, k) co-
incides with the unconstrained minimum of the classical La-

grangian L(y, A s+l) in y.

It was proven (see Jensen and Polyak 1992) that if f2.

is bounded and (6) holds true, then the method (12)-(13)

is executable, i.e. the unconstrained minimizer yS exists for

any k > 0. In the case of the structural optimization problem

(4)-(5), the primal minimizer yS is always unique.

It was also proven that the method (12)-(13) converges,

i.e. lims--c_ f(yS) = f(y,) whether or not the objective

functions and the constraint functions are strongly convex.

Moreover, the next estimation,

I f(YS) - f(Y*)1= (kas) -1/2 , (15)

holds true for any fixed k > 0 and liras--co as = 0. For

a structural design problem, the estimation (15) can be im-

proved. The objective function f(y) for the structural design

problem (4)-(5) is strongly convex; therefore, if A* is unique,

then (due to Polyak 1992a) the MBF method (12)-(13) con-

verges with a linear rate. In other words, for any fixed and

large enough k > 0 there exists 0 < q < 1 such that the

following estimation holds true:

max{ll y,+l _ y. II, II xs+l - x* II} <

(c/k) II xs - x* I1=q IIx" - x* II, (16)

and q -. 0 if k -. oo. Therefore by increasing the barrier

parameter k step by step, one can improve the rate of con-

vergence.
Let us consider the second version of the MBF method

yS+l :F(yS+l,As,k)=min{F(y, AS,ks) iyER.}, (17)

A s+l : Ajs+l = A_[ksgj(yS+l) + 1]-1, j = 1.... . m. (18)

If A* is unique, then the following estimation is true:

max{ll yS _ y. I1,11Xs - X* II}< ql' ... 'qs,
with qs "" 0 if ks -'-', oo.

Before we turn to the numerical realization of the MBF

method, we would like to emphasize that for every s > 1,

VyL(yS,A s) = O. (19)

Also, gi(yS) _., 0 for the active constraints, i.e. for j 6 J =

{j: gj(y*) = 0}.

For the passive constraintsj :9j(Y*) > a > 0, therefore
due to the formula for the Lagrange multipliersupdate, we

have

A_ = A_-l[kgj(y s) + I] -I <_ AS(ka + I)-l , (20)

x_ < x0(k_+ i)-s - 0,1eJ.i.e.

We Can see that,in contrast to the augmented Lagrangian

method (see Powell 1969; Rockafellar 1973; Bertsekas 1982),

the MBF does not require any special care to keep the La-

grange multipliers non-negative. It happens automatically

because of (13) or (18) for Lagrange multiplierupdate.

Due to (14) and the formula for Lagrange multiplierup-
s ,_S OOdate, the sequence {(y , )}s--0 converges to a KKT pair

(y*,A*). To estimate the "distance" between the current

approximation (y,A) and the solution (y*, A*) we introduce

the followingmerit function:

v(w, k) = v(y, A, k) =

77l

max{G(y),IIVyL(y,A)II,_ XjIgj(Y)I},
j=l

where G(y) = -{mingj(y) I 1 < j << m}.



212

It is easy to see that for any feasible vector y. any positive

Lagrange multiplier vector A = (AI,...,Am) and any k > 0

the merit function v(w, k) is non-negative.
It is also clear that

v(y,x,k)= 0 (21)
isequivalent to (7),so that

v(y,A, k) = 0 .----y = y*, A = A',

for anyk > 0.

Also, there exists M > 0 such that

v(s(wS, k) - v(yS, X s,k) =

v(y s, A s, k) - v(y*, A*, k) _< M II As - ),* II

Therefore for any given 0 < 7 < 1 there exists k 7 > 0 such
that

v(w s, k) = v(y s , A s, k) < 7 s , (22)

for anyk>k 7.

We shall use the merit function v(y, A, k) and the estima-

tion (22) for the numerical realization of the MBF method.

5 Newton modified barrier method

The modified barrier methods (12)-(13) or (17)-(18) require

solving the unconstrained optimization problem (12) or (17)

at every step, which in turnl requires an infinite number of

arithmetic operations. Therefore, to realize the MBF method

numerically, we must find a way to replace the vector yS in

(13) by such an approximation _s, which can be found in fi-

nite number of arithmetic operations and retains the estima-

tion (16). Such a way has been indicated by Polyak (1992a,

see p. 205).

In thispaper, to find an approximation for yS we willuse

the Newton method up to the point wl_en the norm in the

Newton directionbecomes smaller than a given small enough

number c > 0, which is defined by the accuracy which we

finallywant to achieve.

The Newton method isparticularlyefficientforstructural

optimization due to the followingthree facts.

I.The MBF F(y, A, k) issmooth and strongly convex for y G

O k •

2.It iseasy to compute the MBF Hessian _72yF(y, A,k).

3.The numerical linearalgebra forsolving normal systems of

equations to find the Newton directionsis well-developed.

To describe the Newton MB method we introduce the

matrix z_y, k) = {diag [kgj(y)+l]}?ffi I with entries kgj(y)+
1. Let us also remember that

R [diag m= ri]ifl,Y = [diag n A mYi]|=l, = [diag Aj]_=I

For the gradient, we obtain

VyF(y, A,k) = -Ry -2 --XA-l(y,k)Q, (23)

while the Hessian is given by

_2yyF(y, A, k) = 2Ry -3 + kQTA_-2(y, k)Q. (24)

Now we will describe the NMBM. The NMBM has two basic

parts. First, we find the approximation _s+l for the primal

minimizer yJ+l. To find the approximation we will use the

Newton method for minirmzing the function F(y, A s, k) in

y when both the vector of Lagrange multipliers A s and the

parameter k > 0 are fixed.

Second, we update the Lagrange multipliers by using the

approximation _s+l instead of yS+l in (13).

After every Lagrange multiplier update, we check the

merit function v(w, k), which is supposed to converge to zero

at an a prior1 given rate 0 < 7 < 1. If the barrier parameter

k > 0 is chosen properly, i.e. k > k 7 > 0, then every La-

grange multiplier update will decrease the function v(w,k)

by a given factor 0 < 7 < 1, i.e.

v(w s+l,k) <_ v(w s,k)7. (25)

If the inequality (25) does not hold, it means that the barrier

parameter is not large enough and we must increase it.

The most costly operation in the NMBM is solving the

system of equations

V2yy F(y, A s,k)d = -ryE(y, X s,k), (26)

to find the Newton directiond - d(y, A s,k). To guarantee

convergence from any starting point y0 E $2, we must use

the Newton method with a step size.

To find a proper step size,we willuse the relaxation in-

equality,

F(y + td, A, k) - F(y, A, k) _< (1/3)t [VyF(y, A, k), d], (27)

starting with t = 1.

If (27) is fulfilled for t = 1, then we have a "pure" Newton

step; otherwise, we cheek (27) for t := (t/2) and continue to

do so while the inequality (27) will be fulfilled.

Due to the propertiesof the MBF F(y, A, k), forany fixed ,

positivevector A > 0 and k > 0, itwillcome to a point where

the inequality(27)willbe fulfilledfor t = I. At thispoint,we

have reached the Newton area and, from thispoint on, we will

use only "pure" Newton steps. Therefore, the minimization

procedure willconverge to the primal minimizer |

y(A,k) = argrnin{F(y,A,k) lz G R n)

quadratically. The stopping criterion is given by the formula -.

II d IIV_vF(y,Ak)=tl d IIv_yF(.)_< e, (28)

where c > 0 is the small enough number defined by the 5.
accuracy of the approximation to the solution y" we want "_

to achieve. Now, we describe the Newton modified barrier

method (see flow chart). -_

Let c be the accuracy which we want to achieve for the fi-

nal approximation _ to the solution y*. We consider a mono-

tonically increasing sequence {ks}sffi 0 : limks = +c_.

We start with y0 E 12k,A 0 = (1,...,i) E Rm, k =

k(0) = k0,l(0) = 1, and 0 < 7 < 0.5. Now assume that "

yS,As, k(s),t(s) have been found already. To find the next

approximation, one must perform the following steps.

0. Start with y := yS.

1. Set A :-- AS,k := k(s),t :-- t(s). _'i

2. Find the Newton direction d = d(y,A,k) by solving the _._
system

_72yF(y'A,k)d=-_TyF(Y,A,k) (29) _1and set t = 1.

3. lfy+td G i2 k, then go to 4; ify+td _ I2k, then t := (t/2) LI--_:
and go to 3.

4. Check the inequalities(27). If they are not fulfilled,set '
.'w

t := (t/2) and check (27) again; if (27) is fulfilledand

t = I, go to 5; if(27) isfulfilledbut 0 < t < I, then set

y := y + td and go to 2.

5. If I1 d IlvyvF(.)< c, go to 6; otherwise, go to 2.
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Fig. 1. Flow diagram for the NMBM method

6. Set y := y,,X = A-l(y,k)A,g. = (9,,X) and check the

inequality

v(tb) < e. (30)

If (30) is fulfilled, then w* = "g"and quit; else, go to 7.

7. Check the inequality

v(,_)< _t+1. (31)

If(31)issatisfied,then set yS+l = y and A s+l = ,X,k(s +

l) = k(s),l(s + I) = g(s) + l,s + I := s, and go to I. If

(31) isnot satisfied,then set ys+l = argmin {.f(Yi)Ii =

1.....s+ I},A s+1 = e = (I.....l),k(s+ l) =/%+l,g(s +

1) = _(s), s + 1 := s, and go to 1.

For any 0 < 7 < 1 there is a number s O such that for s >_

s o , the barrier parameter will not change and the step-size

t = l; i.e. we will perform only the "pure" Newton method

and the primal minirmzer will stay in the Newton area after

every Lagrange multiplier update. Such a point we call a
hot-start.
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From this point on, every Lagrange multiplier update

requires at most O(Inlnc -l) Newton steps, and every La-

grange multiplierupdate shrinks the distance between the

current approximation and the primal-dual solution by a fac-

tor 0 < "r< I.This followsfrom the basicproperties of MBF

(see Polyak 1992a) and Newton's method (seeSmale 1986).

The number so depends on the condition of the con-

strained optimization problem (see Polyak 1992a, b), which

in turn depends on the "measure" of nondegeneracy of the

problem (4)-(5).The value so can be decreased by increas-

ing the barrier parameter k > 0. Moreover, for any non-

degenerate constrained optimization problem and any fixed

0 < 7 < 0.5,there existsk 3,> 0 such that for any k > k.f,

one can achieve the hot-startwith so = I.

However, ifk > 0 islargeenough itwilltake extra compu-

tationalwork to reach the hot.startat the firststage, where

the Lagrange multipliersare fixed and one must change the

barrierparameter k > 0. To reach the hot-start,one can use

shiftedbarrierfunction
n

f(z,e,k) = E riYi -1 + k-1 Elntkgj(Y) + 1].
i=l

In the case of the structural optimization problem, the

shiftedbarrierfunctions possess the so-calledself-concordant

properties (see Nesterov and Nemirovsky 1994). Therefore

from a "warm-start" for a fixedk > 0, i.e.having an approx-

imation in the Newton area for y(k) = argmin{F(y,e,k) I

y E Rn}, one can improve the current approximation in

[I-O(m-0'5)] time (m > n) by performing one Newton step

and updating the barrierparameter k to k[l -O(m-°'5)]-I

(see Gonzaga 1992; Nesterov and Nemirovsky 1994). All

this means that to reach the hot-start,one must perform

O(,¢rmln k-r)Newton steps.

Beginning from the hot-start,we do not need to change

the barrierparameter k from step to step;instead, we update

the Lagrange multipliersafter at most O(Inln E-l) Newton

steps by minimizing F(y, A, k) in !/under fixedk > k-r. Every

Lagrange multiplierupdate leads to an improvement of the

current approximation by a factor0 < 7 < 0.5.

In other words, from the hot-starton, one must perform

at most O(In In e-I ) Newton steps instead of O(v/'_ Newton

steps in the interiorpoint methods to improve the current ap-

proximation by the same factor. Moreover, from some point

on, the number of Newton steps between two successiveLa-

grange multiplierupdate decreases afterevery update. This

is very important for structural optimization because solv-

ing problem (4)-(5) isonly one part of the procedure. The

second part,which isvery time-consuming, isstructuralanal-

ysis.This analysisstarts with the current approximation for

I/,which we use to recompute the matrix Q and then to solve

the problem (4)-(5) again. The existence of the hot-start

makes the optimization part of the procedure substantially

easier.In the next section,we willshow some numerical re-

sults.

6 Examples

The algorithms based on the NMBM to obtain a minimum

weight structurewere used to optimize three trussstructures.

These structureshave been used before forstudying the char-

acteristicsof the optimality criteriaalgorithm (seeBerke and
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Khot 1987; Morris 1982; and others). In this investigation,

the structures were also designed by using the ASTROS pro-

gram and another program based on an optimality criterion

(OC) approach.

In the program using an optimality criterion approach, a

linear recursive relation based on the reciprocal design vari-

ables was used to update the design variables, and a linear set

of simultaneous equations was used to calculate the Lagrange

multipliers associated with the active constraints. The three

programs were run on three different computer systems and

locations and, as such, an exact comparison of the computa-

tional time was not feasible. The main objective was instead

to study the convergence characteristics of the methods and

the various associated programs.

The analysis package forfiniteelement analysisand eval-

uation of the sensitivitiesfor the programs based on the op-
timality criteriaand the NMB method were identical.The

design surfaces near the optimum for allthe problems were

nearly flatand consequently convergence near the optimum

was very slow. The initialdesigns for allthe structures were

feasibleand were obtained by analysing the structure with

cross-sectionalareas equal to 1.0 in2 for all the elements,

then scaling the design to satisfythe constraints.The elas-

ticmodulus was 107 Ibs/in2 and the density of the material

used to calculatethe weight of the structurewas 0.I Ibs3/in3.

The cross-sectionalareas of allthe elements were treated as

design variables.

6.1 Problem I - ¢2-element truss

The structure shown in Fig. 2 was subjected to +40 kips at

nodes 5 and §, and +20 kips at nodes 11 and 12, respectively,

in the vertical direction. The displacements at nodes 6 and

12 were limited to 10 in and 12 in, respectively, and the

minimum size constraint was 0.1 in 2. The initial sizes of all

the elements were 39.746 in 2 and the weight of the structure

was 57111.67 lbs. The iteration history for the three methods

is given in Fig. 3. The optimum design weight was 17425.72
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Fig. 3. Iteration history for 42-element truss

and z-directions.The displacements at nodes 8 and 32 were

restrictedto 10 in and 20 in,respectively,while the minimum

sizeconstraint was 0.I in2. The iterationhistory isgiven in

Fig.5. The initialareas of allthe elements were 8.07in2, and

the weight of the structure was 29474.29 Ibs. The optimum

design weight was 10499.41 Ibs.

Ibs. HXED 26 /

Fig. 2.42-element truss Fig. 4. 148-element truss

!

6.2 Problem 2 - ld8-element truss

The truss shown in Fig. 4 was subjected to 40 kips loads ap-

plied in the x, y, and z-directions at nodes 7 and 8. Similarly,

a load of 20 kips was applied at nodes 31 and 32 in the x, y,

6.3 Problem 3 - 721-element truss

The geometry of the structure is shown Fig. 6. It has 182

nodes and 721 elements. The length, width and height of -
the box-beam are 600 in, 240 in and 30 in, respectively. The



215

O
ee ,_

< Z 0

J

i

_q6!eM

pi
i i.. I:1_

II

II

i1:

_o

m

c_

Fig. 5. Iteration history for 14S-element truss

box-beam has six bays in the transversedirectionand twelve

bays in the longitudinal direction.

/

/
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Fig. 6. 721-elementtruss

A load of 40000 Ibs was applied in the three coordinate

directionsat nodes 25 and 26. At nodes 181 and 182, a load

of 20000 Ibs was applied in the three coordinate directions.

The minimum sizeconstraint was i in2.

The initialarea of the members was equal to 32.323 in2,

which was obtained by scaling the structure to satisfythe

displacement constraints.The initialweight of the structure

was 114384 Ibs. The iterationhistory for this problem is

shown in Fig.7. The ASTROS program was terminated after

twenty iterationsbecause of the excessivecomputational time

needed for each additionaliteration.The optimum design for

thisstructure had a weight 20624.2 Ibs.
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Fig. 7. Iteration history for 721-element truss

The main differencebetween the three structures was the

number of design vaziables.The objective in thisstudy was

to study how the number of design variables influencesthe

convergence characteristics.Comparing the resultsfor allthe

three problems, itisseen that the initialrate of decrease in

weight with each iterationwas substantially higher for the

NMBM algorithm than for the other methods. This was

true for all three problems in spite of the differencesin the

number of design variables. This indicates that the NMB

method makes maximum use of the information provided by

the analysis and sensitivitysubroutines. It should be re-

marked that the computational effortfor these structuralop-

timization problems, satisfyingseparabilityconditions,isthe

least by far for the OC method. The NMBM pays for its

quick convergence with many internal iterationswithin an

outer iteration.ASTROS uses Taylor seriesapproximations
for internaliterationsthat are not needed at allfor OC. For

allthree methods, each outer iterationisdefined here as just
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one full structural analysis.

7 Summary

The Newton modified barrier method, based on rigorous

mathematical derivation, was used to solve three structural

optimization test problems. The varying number of size vari-

ables for the three problms was used to study the effect of

the number of variables on the number of iterations needed

to achieve similar levels of convergence. This dependence was

shown to be weak for the NMBM, similar to this well-known

characteristic of the basic OC methods. The same problems

were solved by the ASTROS program with MicroDot as the

optimizer, and also by an OC-based program. The NMBM

is shown to have superior convergence properties, reducing

the objective function at a much faster and more uniform

rate, thus indicating superior robustness. This fast converg-

ing robust approach has promising potential for solving struc-

tural sizing problems with large numbers of variables within

the emerging multidisciplinary optimization (MDO) problem

setting.
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