86 research outputs found
Easy care finishes based urethane leather. Part I
This article does not have an abstract
Edge Partitions of Optimal -plane and -plane Graphs
A topological graph is a graph drawn in the plane. A topological graph is
-plane, , if each edge is crossed at most times. We study the
problem of partitioning the edges of a -plane graph such that each partite
set forms a graph with a simpler structure. While this problem has been studied
for , we focus on optimal -plane and -plane graphs, which are
-plane and -plane graphs with maximum density. We prove the following
results. (i) It is not possible to partition the edges of a simple optimal
-plane graph into a -plane graph and a forest, while (ii) an edge
partition formed by a -plane graph and two plane forests always exists and
can be computed in linear time. (iii) We describe efficient algorithms to
partition the edges of a simple optimal -plane graph into a -plane graph
and a plane graph with maximum vertex degree , or with maximum vertex
degree if the optimal -plane graph is such that its crossing-free edges
form a graph with no separating triangles. (iv) We exhibit an infinite family
of simple optimal -plane graphs such that in any edge partition composed of
a -plane graph and a plane graph, the plane graph has maximum vertex degree
at least and the -plane graph has maximum vertex degree at least .
(v) We show that every optimal -plane graph whose crossing-free edges form a
biconnected graph can be decomposed, in linear time, into a -plane graph and
two plane forests
A faster pseudo-primality test
We propose a pseudo-primality test using cyclic extensions of . For every positive integer , this test achieves the
security of Miller-Rabin tests at the cost of Miller-Rabin
tests.Comment: Published in Rendiconti del Circolo Matematico di Palermo Journal,
Springe
Testing Hardy nonlocality proof with genuine energy-time entanglement
We show two experimental realizations of Hardy ladder test of quantum
nonlocality using energy-time correlated photons, following the scheme proposed
by A. Cabello \emph{et al.} [Phys. Rev. Lett. \textbf{102}, 040401 (2009)].
Unlike, previous energy-time Bell experiments, these tests require precise
tailored nonmaximally entangled states. One of them is equivalent to the
two-setting two-outcome Bell test requiring a minimum detection efficiency. The
reported experiments are still affected by the locality and detection
loopholes, but are free of the post-selection loophole of previous energy-time
and time-bin Bell tests.Comment: 5 pages, revtex4, 6 figure
A quotient of the Lubin-Tate tower II
In this article we construct the quotient M_1/P(K) of the infinite-level
Lubin-Tate space M_1 by the parabolic subgroup P(K) of GL(n,K) of block form
(n-1,1) as a perfectoid space, generalizing results of one of the authors (JL)
to arbitrary n and K/Q_p finite. For this we prove some perfectoidness results
for certain Harris-Taylor Shimura varieties at infinite level. As an
application of the quotient construction we show a vanishing theorem for
Scholze's candidate for the mod p Jacquet-Langlands and the mod p local
Langlands correspondence. An appendix by David Hansen gives a local proof of
perfectoidness of M_1/P(K) when n = 2, and shows that M_1/Q(K) is not
perfectoid for maximal parabolics Q not conjugate to P.Comment: with an appendix by David Hanse
On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers
We present an efficient quantum algorithm for the exact evaluation of either
the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function
Z for a family of graphs related to irreducible cyclic codes. This problem is
related to the evaluation of the Jones and Tutte polynomials. We consider the
connection between the weight enumerator polynomial from coding theory and Z
and exploit the fact that there exists a quantum algorithm for efficiently
estimating Gauss sums in order to obtain the weight enumerator for a certain
class of linear codes. In this way we demonstrate that for a certain class of
sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon)
graphs, quantum computers provide a polynomial speed up in the difference
between the number of edges and vertices of the graph, and an exponential speed
up in q, over the best classical algorithms known to date
On a Conjecture of Rapoport and Zink
In their book Rapoport and Zink constructed rigid analytic period spaces
for Fontaine's filtered isocrystals, and period morphisms from PEL
moduli spaces of -divisible groups to some of these period spaces. They
conjectured the existence of an \'etale bijective morphism of
rigid analytic spaces and of a universal local system of -vector spaces on
. For Hodge-Tate weights and we construct in this article an
intrinsic Berkovich open subspace of and the universal local
system on . We conjecture that the rigid-analytic space associated with
is the maximal possible , and that is connected. We give
evidence for these conjectures and we show that for those period spaces
possessing PEL period morphisms, equals the image of the period morphism.
Then our local system is the rational Tate module of the universal
-divisible group and enjoys additional functoriality properties. We show
that only in exceptional cases equals all of and when the
Shimura group is we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will
appear in Inventiones Mathematica
Computing L-series of hyperelliptic curves
We discuss the computation of coefficients of the L-series associated to a
hyperelliptic curve over Q of genus at most 3, using point counting, generic
group algorithms, and p-adic methods.Comment: 15 pages, corrected minor typo
Generation and Characterization of Mouse Models for Skeletal Disease
Our laboratories have used genetically engineered mouse models (GEMMs) to assess genetic contributions to skeletal diseases such as osteoporosis and osteoarthritis. Studies on the genetic contributions to OA are often done by assessing how GEMMs respond to surgical methods that induce symptoms modeling OA. Here, we will describe protocols outlining the induction of experimental OA in mice as well as detailed descriptions of methods for analyzing skeletal phenotypes using micro-computerized tomography and skeletal histomorphometry
Fast construction of irreducible polynomials over finite fields
International audienceWe present a randomized algorithm that on input a finite field with elements and a positive integer outputs a degree irreducible polynomial in . The running time is elementary operations. The in is a function of that tends to zero when tends to infinity. And the in is a function of that tends to zero when tends to infinity. In particular, the complexity is quasi-linear in the degree
- …