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FAST CONSTRUCTION OF IRREDUCIBLE POLYNOMIALS OVER

FINITE FIELDS

JEAN-MARC COUVEIGNES AND REYNALD LERCIER

Abstract. We present a randomized algorithm that on input a finite field K with q elements
and a positive integer d outputs a degree d irreducible polynomial in K[x]. The running
time is d1+ε(d)

× (log q)5+ε(q) elementary operations. The function ε in this expression is a
real positive function belonging to the class o(1), especially, the complexity is quasi-linear
in the degree d. Once given such an irreducible polynomial of degree d, we can compute
random irreducible polynomials of degree d at the expense of d1+ε(d)

×(log q)1+ε(q) elementary
operations only.

1. Introduction

This article deals with the following problem: given a prime integer p, a power q = pw

of p, a finite field K with q elements, and a positive integer d, find a degree d irreducible
polynomial in K[x]. We assume that the finite field K is given as a quotient (Z/pZ)[z]/(m(z))
where m(z) is a degree w monic irreducible polynomial in (Z/pZ)[z]. We assume furthermore
that polynomials are given in a dense representation. The complexity of algorithms will be
evaluated in terms of the number of necessary elementary operations. Additions, subtractions
and comparisons in K require a constant times log q elementary operations. Multiplication
and division require (log q) × (log log q)1+ε(q) elementary operations. Note that in this paper,
the notation ε(x) stands for a real positive function of the parameter x alone, belonging to
the class o(1).

It has been proven by Adleman and Lenstra [1] that under the generalized Riemann hy-
pothesis there exists an algorithm that constructs a degree d irreducible polynomial over K

in deterministic polynomial time in d and log q. There is no known unconditional proof of
this result. The main algorithms in this paper are Las Vegas probabilistic. The behavior of a
Las Vegas algorithm depends on the input of course, but also on the result of some random
choices. One has to flip coins. A Las Vegas algorithm either stops with the correct result or
informs that it failed. The running time of the algorithm is bounded from above in terms
of the size of the input only (this upper bound should not depend on the random choices).
For each input, one asks that the probability that the algorithm succeeds is > 1/2. See
Papadimitriou’s book [19] for a formal definition of the main complexity classes.

A classical probabilistic approach to finding irreducible polynomials consists in first choos-
ing a random polynomial of degree d and then testing for its irreducibility. The probability
that a polynomial of degree d be irreducible is greater than or equal to 1/(2d). See Lidl
and Niederreiter [16, Ex. 3.26 and 3.27, page 142] and Lemma 9 of Section 6 below. In
order to check whether a polynomial f(x) is irreducible, we may use Ben-Or’s irreducibility

test [2]. This test has maximal complexity (log q)2+ε(q) × d2+ε(d) elementary operations while
its average complexity is (log q)2+ε(q) × d1+ε(d) elementary operations according to Panario
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2 JEAN-MARC COUVEIGNES AND REYNALD LERCIER

and Richmond [18]. The average complexity of finding an irreducible polynomial with this

method is thus d2+ε(d) × (log q)2+ε(q) elementary operations. All the known algorithms have
a quadratic factor at least in d. A survey can be found in the work of Lenstra [11, 12] and
Shoup [22, section 1.2]. It seems difficult to improve on these existing methods as long as we
use an irreducibility test.

So we are driven to consider very particular polynomials. For example, Adleman and
Lenstra [1] construct irreducible polynomials in this way. Their method uses Gauss periods
that are relative traces of roots of unity. In Section 2, we recall how efficient known methods
can be for very special values of the degree d. We reach quasi-linear complexity in d when d =
ℓδ is a power of a prime divisor ℓ of p(q− 1). Section 3.1.2 explains how to construct a degree
d1d2 irreducible polynomial once given two irreducible polynomials of coprime degrees d1 and
d2. We explain in Sections 4 and 5 how to construct irreducible polynomials using isogenies
between elliptic curves. Thanks to this new construction, we reach quasi-linear complexity
in d when d = ℓδ is a power of a prime ℓ and ℓ does not divide p(q − 1). Putting everything
together, we obtain a probabilistic algorithm that finds degree d irreducible polynomials in
K[x] in quasi-linear time in d, without any restriction on d nor q. Our constructions are
summarized in Section 6. In Section 3, we state several useful preliminary results about finite
fields, polynomials and elliptic curves.

Remark. One may wonder if the algorithms and complexity estimates in this paper are
still valid when the base field is not presented as a quotient of the form (Z/pZ)[z]/(m(z)).
Following [12, Section 1], one may assume for example that elements in K are represented
as vectors in (Z/pZ)w. Assume we are given the vector corresponding to the unit element
1. Assume also we are given a black box or an algorithm that computes multiplications and
divisions of elements in K. In this situation, before applying the algorithms presented in this
paper, we should first construct an isomorphism between the given K and a quotient ring of
the form (Z/pZ)[z]/(m(z)). To this end, we first look for a generator τ of the (Z/pZ)-algebra
K. We pick a random element τ in K. The probability that τ generates K over Z/pZ is at
least 1/2 according to Lemma 9 of Section 6. We compute the powers τk for 0 6 k 6 w.
These are w + 1 vectors of length w. We compute the kernel of the corresponding matrix in
Mw×(w+1)(Z/pZ). If the dimension of this kernel is bigger than 1, then τ is not a generator,
so we pick a different τ and start again. If the kernel has dimension 1, we obtain the minimal
polynomial m(z) ∈ (Z/pZ)[z] of τ , and an explicit isomorphism κ from K̃ = (Z/pZ)[z]/(m(z))
onto K. All this requires O(w) operations in K and O(w3) operations in Z/pZ. Given any
degree d irreducible polynomial f̃(x) in K̃[x], we deduce an irreducible polynomial in K[x] by
applying the isomorphism κ to every coefficient in f̃(x). This requires dw2 operations in Z/pZ.
So our algorithms and complexity estimates remain valid in that case, as long as elementary
operations in K can be computed in time (log q)4+ε(q) elementary operations. This includes
all the reasonable known models for finite fields, including normal bases, explicit data [12]
and towers of extensions.

Notations. If K is a field with characteristic p and q is a power of p, we denote by Φq : K → K

the morphism which raises to the q-th power. If G is an algebraic group over a field with q
elements, we denote by ϕG : G → G(q), the Frobenius morphism.

The book [17] by Liu provides a nice introduction to abstract algebraic geometry. A good
monograph on elliptic curve is [23].
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2. Basic constructions

In this section, K is a finite field with q = pw elements and Ω is an algebraic closure of K.
For every positive integer k, we denote by Fpk the unique subfield of Ω with pk elements. We
explain how to quickly construct a degree d irreducible polynomial when d is a prime power
ℓδ and ℓ divides p(q − 1). All the constructions in this section are known, but deserve to be
quickly surveyed. Section 2.1 deals with the case ℓ = p. Section 2.2 deals with the case when
ℓ is a prime divisor of (q − 1). Section 2.3 is concerned with the special case ℓ = 2 and q
odd. In Section 2.4, we illustrate on a simple example how to use Kummer theory together
with descent when the roots of unity lie in a non-trivial extension of the base field. Although
the results in Section 2.4 are not necessary to prove our main theorems in Section 6, several
ideas at work in this section play a decisive role later in the slightly more advanced context
of Section 5.

2.1. Artin-Schreier towers. In this section, we are given a p-th power d = pδ and we want
to construct a degree d irreducible polynomial in K[x]. We use a construction of Lenstra and
de Smit [13] in that case. If k and l are two positive integers such that l divides k, we define

the polynomial Tl,k(x) = x+xpl
+xp2l

+ · · ·+xp
( k

l
−1)l

. For every positive integer k, we denote
by Ak ⊂ Ω the subset consisting of all scalars a ∈ Ω such that the three following conditions
hold true:

• a generates Fpk over Fp, i.e. Fp(a) = Fpk ,
• a has non-zero absolute trace, i.e. T1,k(a) 6= 0 ,
• a−1 has non-zero absolute trace, i.e. T1,k(a−1) 6= 0.

We set I(X) = (Xp − 1)/(
∑

16i6p−1X
i). This rational fraction induces a p to 1 surjective

map

I : Ω − Fp → Ω − {0}.
We check that I−1(Ak) ⊂ Apk for every k > 1. Indeed, if a ∈ Ak and if I(b) = a then b 6= 1
and

1

(1 − b)p
− 1

1 − b
=

bp − b

(b− 1)p+1
=
b+ · · · + bp−1

bp − 1
= a−1.

So 1/(1−b) is a root of the separable polynomial xp −x = a−1. This polynomial is irreducible
over Fpk [x] because the absolute trace of a−1 is non-zero. So Fp(b) = Fppk . Further, b is a root

of the polynomial xp −a(xp−1 + · · ·+x)−1. So the trace Tk,pk(b) of b relative to the extension
Fppk/Fpk is a. As a consequence the absolute trace of b is T1,pk(b) = T1,k(Tk,pk(b)) = T1,k(a),

the absolute trace of a, and it is non-zero. Now b−1 is a root of the reversed polynomial
xp + a(xp−1 + · · · + x) − 1. So the trace of b−1 relative to the extension Fppk/Fpk is −a. As

a consequence, the absolute trace of b−1 is the opposite of the absolute trace of a, and it is
non-zero.
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Since A1 = Fp − {0}, we deduce that #Apk > (p − 1)pk. In particular the fiber above

1 of the iterated rational fraction I(δ) is irreducible over Fp. See [17, Section 3.1] for the
definition of the fiber of a morphism over a point, and [17, Section 2.4] for the definition of
an irreducible scheme. If w is prime to p, then this fiber remains irreducible over K = Fq. In
general, we factor the degree w of Fq/Fp as w = pew′ where w′ is prime to p. We first look
for an element a ∈ Ape ⊂ Fq. Using the remarks above we can find such an a by solving e
Artin-Schreier equations with coefficients in Fq. To this end, we write down the matrix of the
Fp-linear map x 7→ xp − x in the Fp-basis (1, z, . . . , zw−1) of K = (Z/pZ)[z]/(m(z)). We then
solve the e corresponding Fp-linear systems of dimension w. Altogether, finding a requires a
constant times w × log p operations in K and a constant times ew3 operations in Fp. Since

w = O(log q) and e = O(logw) = O(log log q) we end up with a complexity of (log q)4+ε(q)

elementary operations.
The fiber I−δ(a) is a degree pδ irreducible divisor over Fppe . It remains irreducible over K =

Fq. It remains to compute the annihilating polynomial of this fiber. We compute the iterated

rational fraction Iδ(x) = N(x)/D(x). Composition of polynomials and power series can be

computed in quasi-linear time i.e. d1+ε(d) × (log q)1+ε(q) elementary operations, using recent
results by Umans and Kedlaya [24, 10] (see Corollary 1 in Section 3.1.3). An older algorithm
due to Brent and Kung has exponent (ω + 1)/2 + ε(d) where ω is the exponent in matrix

multiplication. So we can compute N(x) and D(x) at the expense of pδ(1+ε(pδ)) ×(log q)1+ε(q),

that is d1+ε(d) × (log q)1+ε(q) elementary operations. The polynomial f(x) = N(x) − aD(x) is
an irreducible degree d polynomial in K[x].

We thus have proven the following lemma.

Lemma 1 (Artin-Schreier extensions). There exists a deterministic algorithm that on input
a finite field K = (Z/pZ)[z]/(m(z)) with cardinality q = pw and a positive integer δ computes
an irreducible degree d = pδ polynomial in K[x] at the expense of (log q)4+ε(q) + d1+ε(d) ×
(log q)1+ε(q) elementary operations.

Example. We take p = 2, q = 4, δ = 2 and d = 4. We assume K = F2[z]/(z2 + z + 1), so
e = 1. We know that 1 ∈ A1. We set a = z mod z2 + z + 1 and check that I(a) = 1, so
a ∈ A2. We compute I(I(x)) = (x4 +x2 + 1)/(x3 +x) and set f(x) = x4 +x2 + 1 − a(x3 +x).
This is an irreducible polynomial in K[x].

2.2. Radicial extensions. In this section, ℓ is a prime dividing q − 1. Let d = ℓδ for some
positive integer δ. In the special case ℓ = 2 we further ask that ℓ2 = 4 divide q − 1. We want
to construct a degree d irreducible polynomial in K[x]. This is a very classical case.

We write q − 1 = ℓeℓ′ where ℓ′ is prime to ℓ. We first look for a generator a of the ℓ-Sylow
subgroup of F

∗
q. To find such a generator, we pick a random element in F

∗
q and raise it to

the power ℓ′. Call a the result. Check that aℓe−1 6= 1. If this is not the case, start again.
The probability of success is 1 − 1/ℓ. The average complexity of finding such an a is O(log q)
operations in Fq. The polynomial f(x) = xd − a is irreducible in Fq[x]. This is well known
but we try to prove it in a way that will be easily adapted to a more general context later.

The ℓδ+e-torsion Gm[ℓδ+e] of the multiplicative group Gm/Fq is isomorphic to (Z/ℓδ+e
Z,+)

and the Frobenius endomorphism ϕGm : Gm → Gm acts on it as multiplication by q. The
order of q = 1 + ℓ′ℓe in (Z/ℓe+δ

Z)∗ is ℓδ = d. So the Frobenius Φq acts transitively on the
roots of f(x).
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Example. We take p = 5, q = 5, ℓ = 2, δ = 3 and d = 8. We check that 4 divides p − 1.
In particular e = 2 and ℓ′ = 1. The class a = 2 mod 5 generates the 2-Sylow subgroup of
(Z/5Z)∗. Indeed 24 = 1 mod 5 and 22 = −1 mod 5. We set f(x) = x8 − 2.

2.3. A special case. In this section, we assume that p is odd, ℓ = 2 and d = 2δ for some
positive δ. We need to adapt the methods of Section 2.2 in that special case because the
group of units in Z/dZ that are congruent to 1 modulo ℓ is no longer cyclic when ℓ = 2 and
δ > 2. We want to construct a degree d irreducible polynomial in K[x]. This time we assume
that 22 does not divide q − 1. So q is congruent to 3 modulo 4. We set Q = q2 and observe
that 4 divides Q− 1.

We first look for a generator c of FQ over K = Fq. For example we take c a root of the
polynomial y2 − r where r is not a square in K (we can take r = −1). If δ = 1 we are done.
Assume now δ > 2. We write Q − 1 = 2eℓ′ where ℓ′ is prime to 2. We find a generator a
of the 2-Sylow subgroup of F∗

Q. The polynomial F (x) = xd/2 − a is irreducible in FQ[x]. It

remains to derive from F (x) an irreducible polynomial f(x) of degree d in K[x]. We call
ā = Φq(a) = aq, the conjugate of a over Fq. We can compute it at the expense of O(log q)
operations in K. It is clear that ā 6= a because the order of a is divisible by 4 and there is no
point of order 4 in Gm(Fq). The polynomial f(x) = (xd/2 − a)(xd/2 − ā) has coefficients in

K. It is irreducible over K. Indeed, any root b of xd/2 − a is also a root of f(x). The field
Fq(b) generated by b over Fq contains a and it has degree d/2 over Fq(a) = FQ because F (x)
is irreducible in FQ[x]. So f(x) is irreducible in K[x].

Sections 2.2 and 2.3 prove the following lemma.

Lemma 2 (Kummer extensions). There exists a probabilistic (Las Vegas) algorithm that on
input a finite field K = (Z/pZ)[z]/(m(z)) with cardinality q = pw, a prime integer ℓ dividing
q − 1, and a positive integer δ, computes an irreducible degree d = ℓδ polynomial in K[x] at

the expense of (log q)2+ε(q) + d log q elementary operations.

Example. We take p = 7, q = 7, ℓ = 2, δ = 3 and d = 8. Since 4 does not divide q− 1, we set
Q = q2 = 49. We factor 49 − 1 = 24 × 3 so e = 4 and ℓ′ = 3. We check that r = 3 mod 7 is
not a square in F7. So we set c = y mod y2 − 3 ∈ F7[y]/(y2 − 3). We set a = (1 + c)3 = 3 − c
and check a16 = 1 and a8 = −1. We set F (x) = x4 − a. We compute ā = a7 = 3 + c. We set
f(x) = (x4 − a)(x4 − ā) = x8 + x4 − 1. This is an irreducible polynomial in F7[x].

2.4. Descent. In this section, we recall how to use Kummer theory when roots of unity are
missing. We do not hope to find a quasi-optimal algorithm that way. But several important
algorithmic questions arise naturally in this context.

We assume ℓ = 3 and d = 3δ and p = q 6= 3. We assume that 3 does not divide q− 1. So q
is congruent to 2 modulo 3, and we cannot apply the method in Section 2.2. We experiment
in this simple context an idea that will be decisive in Section 5. We base change to a small
auxiliary extension. We set Q = q2 and observe that 3 divides Q− 1. We shall deal with the
field FQ with Q elements. We note that this idea is valid for any prime ℓ, but the degree of
the auxiliary extension FQ/Fq might be quite large (up to ℓ− 1) for a general ℓ.

We first need to build a computational model for the field FQ. For example we pick a
degree 2 irreducible polynomial y2 − r1y + r2 in K[x] and set L = K[y]/(y2 − r1y + r2). We
set c = y mod y2 −r1y+r2. We write Q−1 = 3eℓ′ where ℓ′ is prime to 3. We find a generator
a of the 3-Sylow subgroup of L∗. The polynomial F (x) = xd − a is irreducible in L[x]. It
remains to derive from F (x) an irreducible polynomial f(x) of degree d in K[x].
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Let b = x mod F (x). This is a root of F (x) in L[x]/(F (x)). The latter field has q2d

elements. Recall Φq is the map which raises to the q-th power. We have ΦQ = Φ2
q. For any

α in L[x]/(F (x)), we set Σ1(α) = α+ Φd
q(α) and Σ2(α) = α× Φd

q(α).

L[x]/(F (x)) ≃ Fq2d

XXXXXXXXX

K(Σk(b)) ≃ Fqd

L = K[y]/(y2 − r1y + r2) ≃ Fq2

YYYYYYYYYYYY

K ≃ Fq

Since d is a prime power, at least one among Σ1(b) and Σ2(b) generates an extension of
degree d of Fq (see Lemma 3 of Section 3.1.1). In other words, there exists a k ∈ {1, 2} such
that the polynomial

f(x) =
∏

06l<d

(x− Φl
q(Σk(b)))

is irreducible of degree d in K[x] . Three questions now worry us.
(1) How to compute Σk(b) for k ∈ {1, 2} ?
(2) How to find the good integer k ?
(3) How to compute f(x) starting from F (x) ?

Question 1 boils down to asking how to compute Φd
q(b). A first method would be to compute

Φd
q(b) as bqd

at the expense of a constant times d log q operations in L[x]/(F (x)). This would

require a constant times log q × d2+ε(d) operations in K. This is too much for us.
Instead of that, we should remind ourselves of the geometric origin of the polynomial

F (x). Indeed, b lies in Gm[3e+δ ]. We write qd = R mod 3e+δ where 0 6 R < 3e+δ 6 Qd.
Then Φd

q(b) = bR can be computed at the expense of a constant times logR ≤ logQ + log d

operations in L[x]/(F (x)). This requires a constant times log q × d1+ε(d) operations in K.

Question 2 can be solved by comparing Σ1(b) and its conjugate by Φ3δ−1

q . We have

Φ3δ−1

q (Σ1(b)) = Σ1(Φ3δ−1

q (b)) = Φ3δ−1

q (b) + Φ3δ+3δ−1

q (b).

Each of the two terms in the above sum can be computed as explained in the answer of
Question 1. Since Σ2(b) = 1 here, we already know that Σ1(b) is the good candidate. But we
keep the more naive approach in mind.

Question 3 is related to the following problem: we are given Σk(b) for some k ∈ {1, 2}.
We know that Σk(b) generates the degree d extension of K inside L[x]/(F (x)). Therefore its
minimal polynomial f(x) in the latter extension has coefficients in K. We want to compute
this degree d polynomial in K[x]. One can apply a general algorithm for this task, such
as the one given by Kedlaya and Umans ([24, 10] and Theorem 2 below). They show that

it is possible to compute this minimal polynomial at the expense of d1+ε(d) × (logQ)1+ε(q)

elementary operations. Thus, the complexity is quasi-linear in the degree d.

Example. We take p = q = 5, ℓ = 3, δ = 2, d = 9. So Q = 25, Q − 1 = 3 × 8, e = 1 and
ℓ′ = 8. We check that r = 2 mod 5 is not a square. We set c = y mod y2 − 2 ∈ F5[y]/(y2 − 2).
We compute a = (1 + c)8 = 2 + 3c. We check a3 = 1 and a 6= 1. We set F (x) = x9 − a

and b = x mod F (x). We need to compute the conjugate of b above F59 . This is b59
.
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Recall b lies in Gm[27]. So we don’t raise b to the power 59 brutally. We rather compute
59 = 1953125 = −1 mod 27. So Φ59(b) = 1/b = 2(y + 1)x8 mod (x9 − 2 − 3y, y2 − 2, 5). The
product Σ2(b) = 1 is not the good candidate. So we compute the minimal polynomial of
Σ1(b) = b+ 1/b and find f(x) = x9 + x7 + 2x5 + 4x+ 1 ∈ F5[x].

3. Preliminary algebraic and geometric results

We introduce several algebraic and algorithmic results about finite field extensions and
elliptic curves over finite fields

3.1. Finite field extensions. In this section, we collect algebraic and algorithmic results
about finite fields.

3.1.1. Generator of a subextension. We prove the following lemma.

Lemma 3 (Subfield generated by a symmetric function). Let M be a finite field and let K

be a subfield of M. We assume that the degree of M over K is a power of a prime integer
ℓ. Let α be a generator of M over K. Let L be a subfield of M containing K. Let n be the
degree of M over L. Let (Σk(α))0<k6n be the n symmetric functions of α above L. Then at
least one among these n symmetric functions generates L over K.

M = K(α)

n

S(α)

6nL
ℓ

OOOOOOOOOOOOOO

S

ooooooooooooo

K

Proof. If L = K, there is nothing to prove. When L is a non trivial extension of K, the
degree of this extension is a power of ℓ. Let S be the unique maximal proper subfield of L

containing K. The degree of L over S is ℓ. The extension M/L is cyclic of finite degree n, a
power of ℓ.

The n elementary symmetric functions of α over L are the coefficients of the minimal
polynomial of α, seen as an element in the L-algebra M. We claim that at least one of these
symmetric functions (Σk(α))0<k6n generates L over K. Otherwise, all these functions would
be contained in S. The field S(α) would then be a degree 6 n algebraic extension of S. Since
S(α) contains K(α), S(α) is M. But the degree of M over L is n, and this is greater than or
equal to the degree of M over S. So L = S. A contradiction. �

3.1.2. Compositum. In this section, K is a finite field with q = pw elements and Ω is an
algebraic closure of K. For every positive integer k, we denote by Fpk the unique subfield of

Ω with pk elements. We have seen in Section 2 how to construct an irreducible polynomial of
degree d in K[x] when d is a prime power ℓδ and ℓ divides p(q − 1). In Sections 4 and 5, we
shall treat the case when d is a prime power ℓδ and ℓ is prime to p(q − 1). The last problem
to be considered is thus the following one: given two irreducible polynomials f1(x) and f2(x)
in K[x] with coprime degrees d1 and d2, construct a degree d1d2 irreducible polynomial.
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Lemma 4 (Composed sum of two polynomials). There exists a deterministic algorithm that
on input a finite field K = (Z/pZ)[z]/(m(z)) with q elements, two irreducible polynomials f1

and f2 in K[x] of coprime degree d1 and d2, computes a degree d1d2 irreducible polynomial in
K[x] at the expense of (d1d2)1+ε(d1d2) × (log q)1+ε(q) elementary operations.

Proof. Let α1 ∈ Ω be a root of f1(x). Let α2 ∈ Ω be a root of f2(x). We first show that α1+α2

generates an extension of degree d1d2 of Fq. Indeed, let Φ ∈ Gal(Ω/Fq) be an automorphism
that fixes α1 + α2 ,

Φ(α1 + α2) = α1 + α2 .

One deduces that Φ(α1) − α1 = α2 − Φ(α2) is an element γ of the intersection Fq of Fqd1

and Fqd2 . The order of Φ acting on Fqd1 divides d1. So Φd1(α1) − α1 = d1γ = 0. We prove
in the same way that d2γ = 0. Since d1 and d2 are coprime we deduce that γ = 0. Thus
Φ acts trivially on Fqd1 = Fq(α1) and on Fqd2 = Fq(α2), therefore also on their compositum
Fqd1d2 . So α1 + α2 generates this compositum. Note that the same argument proves that
α1α2 generates Fqd1d2 .

It is thus enough to compute the minimal polynomial of the sum, resp. the product, of α1

and α2. For this task, one may follow works by Bostan, Flajolet, Salvy and Schost [3], based
on algorithms for symmetric power sums due to Kaltofen and Pan [9] and Schönhage [20].
The resulting polynomial is called the composed sum, resp. the composed product, of f1 and
f2. See also [4]. This yields an algorithm with a quasi-linear time complexity in d1d2. �

3.1.3. Fast composition. The following theorems were recently proven by Umans and Ked-
laya [10].

Theorem 1 (Kedlaya and Umans). There exists a deterministic algorithm that on input a
finite field K = (Z/pZ)[z]/(m(z)) with q elements and three polynomials f(x), g(x) and h(x)
in K[x] with degrees bounded by d, outputs the remainder f(g(x)) mod h(x) at the expense of

d1+ε(d)(log q)1+ε(q) elementary operations.

Theorem 2 (Kedlaya and Umans). There exists a deterministic algorithm that on input a
finite field K = (Z/pZ)[z]/(m(z)) with q elements, a degree d irreducible monic polynomial
f(x) in K[x], and a degree 6 d − 1 polynomial g(x) in K[x], outputs the minimal polyno-

mial h(x) ∈ K[x] of the class g(x) mod f(x) at the expense of d1+ε(d)(log q)1+ε(q) elementary
operations.

The following corollary of Theorem 1 is particularly useful.

Corollary 1. There exists a deterministic algorithm that on input a finite field K with q
elements given by a quotient (Z/pZ)[z]/(m(z)) and two rational fractions F (x) and G(x)
in K(x) with respective degrees dF and dG, outputs the composition F (G(x)) = u(x)/v(x)

where u(x) and v(x) are coprime polynomials, at the expense of (dF dG)1+ε(dF dG)(log q)1+ε(q)

elementary operations.

We first notice that the problem is trivial if one of the two fractions has degree 1. Composing
F and G with rational linear fractions we may assume that F (0) = G(0) = 0. We compute
the Taylor expansions at 0 of either fractions and we compose them using the algorithm
in Theorem 1. We recover the numerator u(x) and denominator v(x) of the corresponding
fraction using the fast extended Euclid algorithm [5, Chapter 11].

3.2. Elliptic curve over finite fields. We now state several known and useful facts about
elliptic curves over finite fields.
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3.2.1. Quotient isogenies. Let K be a finite field of characteristic p and cardinality q. Let E
be an elliptic curve over K. We denote by ϕE : E → E the degree q Frobenius endomorphism
of E. Let t be the trace of ϕE . Let O be the quotient ring Z[X]/(X2 − tX + q) and let α be
the class of X in O. Let ǫE : O → End(E) be the ring homomorphism that maps α onto ϕE .
We say that ǫE is the standard labeling of E.

Let S be a subset of O containing an integer that is prime to p. We define the kernel of
S in E to be the intersection of the kernels of all endomorphisms ǫE(s) for s ∈ S. This is a
finite étale subgroup of E. So, it is characterized by its set of geometric points. We denote it
E[S].

Now let F be another elliptic curve over K and let ι : E → F be an isogeny defined over
K. Let ǫF : O → End(F ) be the morphism of free Z-modules that sends 1 onto the identity
and α onto ϕF . For any element s in O, we have

(1) ι ◦ ǫE(s) = ǫF (s) ◦ ι.
Indeed, the identity above is true for s = α because ι is defined over K. It is evidently true
also for s = 1. Therefore it is true for all s in O by linearity. We deduce from Eq. (1) that
ǫF is a ring homomorphism, just as ǫE.

Now let G be a third elliptic curve over K. Let  : F → G be an isogeny defined over
K. We define ǫG : O → End(G) as before. Assume ι : E → F is separable with kernel E[S]
where S is a subset of O containing a prime to p integer. Assume  : F → G is separable with
kernel F [T ] where T is a subset of O containing a prime to p integer. Then the kernel of

 ◦ ι : E
ι

// F


// G

is E[ST ]. Indeed, both the kernel of  ◦ ι and E[ST ] are étale, so they are characterized by
their geometric points. Now let x be a point in the kernel of  ◦ ι. Its image ι(x) by ι lies in
the kernel of . Therefore it is killed by T : for any element t of T one has ǫF (t)(ι(x)) = 0F .
So ι(ǫE(t)(x)) = 0F and ǫE(t)(x) belongs in the kernel of ι. Thus it is killed by S: for any s
in S we have ǫE(s)(ǫE(t)(x)) = 0E or equivalently ǫE(st)(x) = 0. Therefore x lies in E[ST ].

Conversely, let x be a point in E[ST ]. Let t be an element in T . We observe that ǫE(t)(x)
is killed by S, so it belongs to the kernel of ι. Thus ι(ǫE(t)(x)) = ǫF (t)(ι(x)) = 0F . So ι(x)
is killed by T , therefore it belongs to the kernel of . Thus (ι(x)) = 0G.

Lemma 5 (Composition of quotient isogenies). Let K be a finite field with characteristic p.
Let E be an elliptic curve over K. Let t be the trace of the Frobenius endomorphism of E. Let
O be the quotient ring Z[X]/(X2 − tX+ q) and let ǫE : O → End(E) be the standard labeling.
Let S be a subset of O containing a prime to p integer and let ι : E → F be the quotient by
E[S] isogeny. Let T be a subset of O containing a prime to p integer and let  : F → G be
the quotient by F [T ] isogeny. Then the kernel of  ◦ ι is E[ST ].

We note that a general and conceptual study of the action of rings over group schemes
was initiated by Serre [21], Giraud [6], Waterhouse [26], and Lenstra [15]. In the case of
elliptic curves one may use canonical lifts and reduce to complex multiplication theory in
characteristic zero. We prefer a more self-contained and elementary approach.

3.2.2. Density of elliptic curves with an ℓ-torsion point. Let K be a finite field with q elements
and let ℓ be a prime integer. Lenstra [14] and Howe [7] give estimates for the density of elliptic
curves over K whose number of K-rational points is divisible by ℓ. In this section, we recall
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what these authors mean by density and we explain why this density fits with the uniform
density on Weierstrass curves.

We call E(K) the set of K-isomorphism classes of elliptic curves over K. The K-isomorphism
class of a curve E/K is denoted by [E]. One defines a measure on the finite set E(K) in the
following way: the measure of a class [E] is the inverse of the group of K-automorphisms of
E. So the measure of a subset S of E(K) is

(2) µE(S) =
∑

[E]∈S

1

# AutK(E)
.

Lenstra and Howe prove that the measure of the full set E(K) is q.

Now, let W(K) be the set of Weierstrass elliptic curves over K,

(3) E/K : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 .

We denote by µW the uniform measure on this set: the µW -measure of a subset of W(K) is
defined to be its cardinality. This is a very convenient measure. In order to pick a random
Weierstrass curve according to this measure, we just choose each coefficient a1, a2, a3, a4, a6

at random with the uniform probability in K and we check that the discriminant is non-zero
(if it is zero we start again).

Let γ : W(K) → E(K) be the map that to every curve E associates its isomorphism class
[E]. This is a surjection: every elliptic curve over K has a Weierstrass model over K. Let
A(K) be the group of projective transforms of the form

(X : Y : Z) 7→ (u2X + rZ : u3Y + su2X + tZ : Z)

where u ∈ K∗ and r, s, t ∈ K. This group acts on the set W(K) of Weierstrass elliptic curves
over K. Two Weierstrass elliptic curves over K are isomorphic over K if and only if they
lie in the same orbit for the action of A(K). Further the group of K-automorphisms of a
Weierstrass elliptic curve is isomorphic to the stabilizer of E in A(K).

So the orbit of a Weierstrass curve E/K under the action of A(K) is the fiber γ−1([E]) and
the cardinality of this fiber is the quotient #A(K) /# AutK(E). Therefore, if S is a subset
of E(K) and if T is its preimage by γ, then the measures of S and T are proportional,

µW(T ) = #A(K) × µE(S) where #A(K) = (q − 1)q3.

In particular, if we want to pick a random K-isomorphism class of elliptic curve according
to the measure µE , it suffices to pick a random Weierstrass elliptic curve according to the
uniform measure µW .

We now can state a special case of the main result in Howe’s paper [7].

Theorem 3 (Howe). Let q be a prime power and let K a field with q elements. Let E(K) be
the set of K-isomorphism classes of elliptic curves over K. Let µE be the measure on this set
defined by Eq. (2). Let ℓ be a prime integer not dividing q − 1. The isomorphism classes in
E(K) of elliptic curves having a K-rational point of order ℓ form a subset of density r(ℓ, q)
where

∣

∣

∣

∣

r(ℓ, q) − 1

ℓ− 1

∣

∣

∣

∣

≤ 4ℓ(ℓ+ 1)

(ℓ− 1)
√
q
.

We deduce the following corollary.
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Corollary 2 (Density of elliptic curves with an ℓ-torsion point). Let q be a prime power and
let K be a field with q elements. Let W(K) be the set of Weierstrass elliptic curves over K.
Let µW be the uniform measure on this set. Let ℓ be a prime integer not dividing q − 1. The
density r(ℓ, q) of Weierstrass curves having a K-rational point of order ℓ satisfies

∣

∣

∣

∣

r(ℓ, q) − 1

ℓ− 1

∣

∣

∣

∣

≤ 4ℓ(ℓ+ 1)

(ℓ− 1)
√
q
.

4. Isogeny fibers

In this section, we show how to construct irreducible polynomials using elliptic curves.
Let K be a field and let Ω be an algebraic closure of K. Let E/K be an elliptic curve

given by the Weierstrass equation (3). We denote by OE = [0 : 1 : 0] the origin of E and
by x = X/Z, y = Y/Z the affine coordinates associated with the projective coordinates
[X : Y : Z].

Let E′/K be another elliptic curve in Weierstrass form. We define X ′, Y ′, Z ′, a′
1, a′

2, a′
3,

a′
4, a′

6, x′, y′, O′ similarly. Let ι/K : E/K → E′/K be a degree d separable isogeny. We
assume that d is a positive odd number and the kernel Ker ι is cyclic. Let T ∈ E(Ω) be a
generator of Ker ι. Let ψι(x) ∈ K[x] be the degree (d− 1)/2 polynomial

(4) ψι(x) =
∏

16k6(d−1)/2

(x− x(kT )) .

There exists a degree d polynomial φι(x) ∈ K[x] and a polynomial ωι(x, y) = ω0(x) + yω1(x)
in K[x, y] with degree 1 in y such that the image of the point (x, y) by ι is (x′, y′) where x′ =
φι(x)/ψ2

ι (x) and y′ = ωι(x, y)/ψ3
ι (x). We call I(x) the rational fraction I(x) = φι(x)/ψ2

ι (x).
Now let A be a K-rational point on E′ such that 2A 6= O′ and let B ∈ E(Ω) be a point on

E such that ι(B) = A. We define the degree d polynomial

fι,A(x) = φι(x) − x′(A)ψ2
ι (x) ∈ K[x].

Its roots are the x(B + kT ) for 0 6 k < d, and they are pairwise distinct because 2A 6= O′.
So fι,A(x) is a degree d separable polynomial. The coordinate x lies in the field K(E) of K-
rational functions on E. So the map x : E(Ω)−O → Ω induces a Galois equivariant bijection
between the fiber ι−1(A) and the roots of fι,A(x). In particular, fι,A(x) is irreducible if and
only if the fiber ι−1(A) is. The fiber ι−1(A) over A is an affine scheme with ring K[x]/(fι,A(x))
and the class of y in this ring is given by

(5) y =
y′(A)ψ3

ι (x) − ω0(x)

ω1(x)
mod fι,A(x) .

Then, the two questions that worry us are the following ones.
(1) Can we compute fι,A(x) quickly, e.g. in quasi-linear time in d ?
(2) Under which conditions is fι,A(x) irreducible ?

These two questions are successively addressed in Sections 4.1 and 4.2. In Section 4.3 we
deduce a fast algorithm that constructs a degree d irreducible polynomial in K[x] when K is
a finite field with q = pw elements and d = ℓδ is a power of a prime ℓ such that ℓ is prime to

p(q − 1) and 4ℓ 6 q
1
4 . Larger primes ℓ are considered in Section 5.
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4.1. Calculation of the polynomial fι,A(x). For any geometric point P ∈ E(Ω), we denote
by τP : E → E the translation by P . Let xP be the function x ◦ τ−P and similarly let yP

be the function y ◦ τ−P . If P = kT , we moreover define xk = xkT and yk = ykT . Recall d is
assumed to be odd.

In this section, we present methods for fast construction of isogenies. Section 4.1.1 concerns
isogenies with split cyclic kernel and Vélu’s formulae. Section 4.1.2 recalls how one can take
advantage of the decomposition of an isogeny into several ones with smaller degrees. This is
particularly useful when E/K has complex multiplication and the isogeny in question is the
quotient isogeny associated to some power of an invertible prime ideal in the endomorphism
ring of E. This idea is detailed in Section 4.1.3.

4.1.1. Vélu’s isogenies. Let T be a K-rational point and let ι be the isogeny given by Vélu’s
formulae [25],

(6)















x′ = x+
∑

0<k<d

(xk − x(kT )) ,

y′ = y +
∑

0<k<d

(yk − y(kT )) .

We put some order in Eq. (6). Using the addition law on E, we first express xk in terms of
x and y,

(7) xkT · (x− x(kT ))2 = x(kT )x2 + (a3 + 2y(kT ) + a1x(kT )) y

+
(

a4 + a2
1x(kT ) + a1a3 + 2a2x(kT ) + a1y(kT ) + x(kT )2

)

x

+ a2
3 + a1a3x(kT ) + a3y(kT ) + a4x(kT ) + 2a6.

We deduce that (xkT + x−kT − 2x(kT )) · (x− x(kT ))2 is equal to

(8) (6x(kT )2 + (a2
1 + 4a2)x(kT ) + a1a3 + 2a4)x− 2x(kT )3

+ (a1a3 + 2a4)x(kT ) + a2
3 + 4a6 .

One computes the rational fraction x′ = φι(x)/ψ2
ι (x) using Eqs. (6) and (8) by gathering the

terms relative to k and −k, with the help of a “divide and conquer” strategy [5, Chapter
10]. Complexity is quasi-linear in d. A similar calculation gives us the explicit form of
y′ = ωι(x, y)/ψ3

ι (x).

Example. We take p = 7, q = 7 and d = 5. The elliptic curve E/F7 with equation y2 =
x3 + x + 4 has got ten F7-rational points. The point T = (6, 4) has order ℓ = 5. The group
generated by T is

〈T 〉 = {OE , (6, 4), (4, 4), (4, 3), (6, 3)} .
The corresponding isogenous curve E′ is given by Vélu’s formulae, E′ : y2 = x3 + 3x + 4.
Moreover, Eq. (6) yields

x′ = x+
y + 6x2 + 2x

(x+ 1)2 − 6 +
y + 4x2 + 3x+ 5

(x+ 3)2 − 4+

6 y + 4x2 + 3x+ 5

(x+ 3)2 − 4 +
6 y + 6x2 + 2x

(x+ 1)2 − 6 .
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Using Eq. (8), we find an expression for x′ in terms of x alone,

x′ = x+
x+ 2

(x+ 1)2 +
1

(x+ 3)2 =
x5 + x4 + 2x3 + 5x2 + 4x+ 5

(x+ 3)2 (x+ 1)2 .

It remains to choose a point A in E′(F7). We set A = (1, 1), a point of order 5, and we finally
obtain,

fι,A(x) = x5 + x4 + 2x3 + 5x2 + 4x+ 5 − (x+ 3)2 (x+ 1)2 = x5 + x3 + 4x2 + x+ 3 .

4.1.2. Composition of isogenies. Assume d factors as d1d2. Then the degree d isogeny ι :
E → E′ decomposes as ι = ι2 ◦ ι1 where ι1 : E → F is a degree d1 isogeny and ι2 : F → E2

is a degree d2 isogeny. The kernel of ι1 is generated by d2T and the kernel of ι2 is generated
by ι1(T ). Let I(x) be the degree d rational fraction associated with ι. Define similarly I1(x)
and I2(x). Then I(x) = I2(I1(x)). We may then compute I(x) in three steps: first compute
I1(x), then compute I2(x), and finally compute the composition I = I2 ◦ I1 using work by
Umans and Kedlaya [24, 10] (see Corollary 1 in Section 3.1.3).

4.1.3. A special simple case. We now assume that K is a finite field with q = pw elements.
Let ϕE : E → E be the Frobenius endomorphism of E and t be its trace. Let O be the
quotient ring Z[X]/(X2 − tX + q) and let α be the class of X in O. We call ǫ : O → End(E)
the ring monomorphism that sends α onto ϕE . For every subset S of O, we define the kernel
of S in E to be the intersection of all the kernels of the endomorphisms ǫ(s) for s ∈ S. We
denote it by E[S]. Let ℓ be a prime not dividing p(q− 1). We assume that ℓ divides the order
q + 1 − t of E(K). As a consequence ℓ is coprime to the discriminant t2 − 4q of O.

We have

X2 − tX + q = (X − 1)(X − q) mod ℓ ,

because 1 − t + q is divisible by ℓ and the product of the roots of X2 − tX + q equals q.
Furthermore, the roots (1 mod ℓ) and (q mod ℓ) are distinct because ℓ does not divide q − 1.
Let l = (ℓ, α− 1) be the prime ideal in O above ℓ and containing α− 1. The kernel of l in E
is E[ℓ](K), the rational part of the ℓ-torsion of E. This is a cyclic group of order ℓ because ℓ
divides q + 1 − t and ℓ is coprime to p(q − 1).

Let k be a positive integer. According to Hensel’s lemma, there exist two integers λk and
µk in [0, ℓk[ such that λk = 1 mod ℓ, µk = q mod ℓ and

X2 − tX + q = (X − λk)(X − µk) mod ℓk.

The ideal lk of O is generated by ℓk and α − λk. We show that the kernel E[lk ] of lk in E
(in the sense of section 3.2.1) is a cyclic group of order ℓk inside E(Ω). Let ιk : E → Ek

be the quotient isogeny by E[lk]. The elliptic curve Ek is defined over K, a finite field with
q elements. Let ǫk : O → End(Ek) be the ring homomorphism that sends α onto the q-
Frobenius endomorphism of Ek. The two homomorphisms ǫ and ǫk are compatible with the
isogeny ιk in the sense that for every s in O one has ǫk(s) = ιk ◦ ǫ(s) ◦ ι−1

k . Using Lemma 5 of
Section 3.2.1, we see that ιk+1 : E → Ek+1 decomposes as k+1 ◦ ιk where k+1 : Ek → Ek+1

is the degree ℓ isogeny with kernel Ek[l] = Ek[ℓ](K). In particular, ιk has degree ℓk, so the
order of the kernel E[lk] of ιk is ℓk. This kernel is a subgroup of E[ℓk] that does not contain
the full ℓ torsion, therefore it is cyclic. We obtain in this way a chain of degree ℓ isogenies

E
1

// E1
// . . . // Ek

k+1
// Ek+1

// . . .
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We denote by Ik(x) ∈ K(x) the degree ℓk rational fraction associated with ιk. We denote
by Jk ∈ K(x) the degree ℓ rational fraction associated with k. In order to compute 1 = ι1,
we pick a random point in E(K) and multiply it by (q + 1 − t)/ℓ. If the result is non-zero,
we are done, otherwise we start again. We then compute I1 = J1 using Vélu’s formulae in
Section 4.1.1. Every rational fraction Jk can be computed the same way. The composition
Ik = Jk ◦ · · · J2 ◦ J1 can be computed using the method in Paragraph 4.1.2.

4.2. Irreducibility conditions. We assume that we still are in the situation of Paragraph 4.1.3.
Let ℓ be a prime not dividing p(q − 1). In particular ℓ is odd. We assume that ℓ divides the
order q+ 1− t of some elliptic curve E/K. As a consequence ℓ is coprime to t2 − 4q. We want
to construct an irreducible polynomial f(x) ∈ K[x] with degree d = ℓδ. We factor q + 1 − t
as q + 1 − t = ℓeℓ′ where ℓ′ is prime to ℓ.

There exist two integers λe+δ and µe+δ such that

λe+δ = 1 mod ℓe , µe+δ = q mod ℓe ,

X2 − tX + q = (X − λe+δ)(X − µe+δ) mod ℓe+δ .

We write λe+δ = 1 + ℓeℓ′′ with ℓ′′ prime to ℓ. In the sequel, we set λ = λe+δ and µ = µe+δ.
Let now

d = (d, α − λ) = (ℓ, α − λ)δ = l
δ.

This is an invertible ideal. Its kernel E[d] in E is the kernel of the isogeny ιδ : E → Eδ.
The ℓ-Sylow subgroup of Eδ(K) is the kernel of le = (ℓe, α − 1) in Eδ and it is cyclic. Let A
be a generator of it. Let B ∈ E(Ω) such that ιδ(B) = A. Then, B generates the kernel of
l
e+δ = (ℓe+δ, ϕE − λ) in E. Especially,

(9) ϕE(B) = λB,

and the order of λ = 1 + ℓeℓ′′ in (Z/ℓe+δ
Z)∗ is d = ℓδ. Thus, the Galois orbit of B has

cardinality d and the polynomial fι,A(X) is irreducible.

4.3. Existence conditions. Assume we are given a finite field K with characteristic p and
cardinality q and an integer d = ℓδ such that ℓ is prime to p(q − 1). We look for a degree
d irreducible polynomial in K[x]. The construction in Section 4.2 requires an elliptic curve
over K such that ℓ divides the cardinality q + 1 − t of E(K). Is there any such elliptic curve
? How can we find it ?

If ℓ 6 2
√
q, then there are at least two consecutive integer multiples of ℓ in the interval

[q + 1 − 2
√
q, q + 1 + 2

√
q]. At least one of them is not congruent to 1 modulo p. So there

exists at least one elliptic curve with cardinality divisible by the prime ℓ. We want to bound
from below the number of such elliptic curves. We use the results of Lenstra [14] extended
by Howe [7].

From Theorem 3 and Corollary 2 of Section 3.2.2, we deduce that the probability that a
Weierstrass elliptic curves over a finite field K with q element has an order divisible by ℓ is
1/(ℓ− 1), up to an error term bounded in absolute value by 8ℓ/

√
q. We deduce that if

(10) 4ℓ 6 q
1
4 ,

then this proportion is at least 1/(2ℓ).
In that case, we can find such an elliptic curve in the following way: we pick a random

Weierstrass elliptic curve over K. We compute its cardinality using Schoof’s algorithm at the
expense of (log q)5+ε(q) elementary operations. If this cardinality is divisible by ℓ we are done.
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Otherwise, we try again. The average number of trials is O(ℓ). The expected time to find the

needed curve E is ℓ(log q)5+ε(q) elementary operations provided condition (10) holds true.

All in all, we need ℓ×(log q)5+ε(q) elementary operations to find the first elliptic curve, then
δ1+ǫ(δ) × ℓ1+ε(ℓ) × (log q)2+ε(q) elementary operations to compute the δ isogenies of degree ℓ,

and d1+ε(d) × (log q)1+ε(q) elementary operations to compose these isogenies. The conclusion
of this section is the following.

Lemma 6 (Isogeny fiber). There exists a probabilistic (Las Vegas) algorithm that on input
a finite field K with characteristic p and cardinality q = pw, a prime integer ℓ not dividing

p(q − 1) such that 4ℓ 6 q
1
4 , and a positive integer δ, computes an irreducible polynomial in

K[x] of degree d = ℓδ, at the expense of ℓ × (log q)5+ε(q) + d1+ε(d) × (log q)2+ε(q) elementary
operations.

5. Base change

In this section, K = (Z/pZ)[z]/(m(z)) is a finite field with q = pw elements. We still
assume here that d = ℓδ is a power of a prime ℓ where ℓ is prime to p(q − 1). We look for a

degree d irreducible polynomial in K[x]. However, we no longer assume that 4ℓ 6 q
1
4 .

We adapt the main idea in Section 2.4 to the context of elliptic curves: we base change
to a small auxiliary extension. Let n be the smallest integer coprime with ℓ(ℓ− 1) such that

Q = qn satisfies 4ℓ 6 Q
1
4 . According to Iwaniec’s result about Jacobsthal’s problem [8] we

have n = (log ℓ)2+ε(ℓ). Let us remark that d is then coprime with Q− 1 too.
Using e.g. the methods in Shoup [22], we find a degree n irreducible polynomial m′ ∈ K[z′].

We set L = K[z′]/(m′(z′)). A basis of this (Z/pZ)-vector space is given by the zjz′i for
0 6 i < n and 0 6 j < w. Using the method given in the introduction, we find a generator
τ of the (Z/pZ)-algebra L. We compute also the minimal polynomial h(u) ∈ (Z/pZ)[u] of
τ . We set L̃ = (Z/pZ)[u]/(h(u)). A basis of this (Z/pZ)-vector space is given by the uk for
0 6 k < nw. We compute and store the matrix of the isomorphism κ : L̃ → L that sends
u mod h(u) onto τ . This is a nw × nw matrix with entries in Z/pZ. We also compute and
store the inverse of this matrix. The image K̃ = κ−1(K) of K by κ−1 is the unique subfield
with q elements inside L̃.

The reason for introducing these two different models of the field with qn elements is that,
on the one hand, this field should be constructed as an extension of K because we shall have
to descend to K later on; but on the other hand, the field with qn elements should be also
presented as a monogenic extension of Z/pZ, because all the algorithms described and used
so far (and in particular the algorithms due to Umans and Kedlaya) require that the base
field be presented as a monogenic extension of Z/pZ. One can now apply the construction
of Section 4 to L̃ and obtain an irreducible polynomial Fι,A(x) of degree d in L̃[x], in time

(logQ)5+ε(Q)d1+ε(d), that is

(log q)5+ε(q)d1+ε(d)

elementary operations.
It remains to derive from Fι,A(x) an irreducible polynomial f(x) of degree d over K. Recall

Fι,A(x) is the minimal polynomial of x(B) where B is a geometric point of order ℓe+δ 6 4Qd

on an elliptic curve E over L̃. We also are given an integer λ such that 0 6 λ < ℓe+δ and

(11) ϕE(B) = λB
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where ϕE is the degreeQ Frobenius endomorphism of E/L̃. We set α = x(B) ∈ L̃[x]/(Fι,A(x)).
Recall Φq is the map which raises to the q-th power. We have ΦQ = Φn

q . The field

L̃[x]/(Fι,A(x)) = L̃(α) is a degree d extension of L̃. For any integer k between 1 and n,
one denotes by Σk(α) the k-th symmetric function of the conjugates of α over the subfield

with qd elements. These conjugates are α, Φd
q(α), Φ2d

q (α), . . . , Φ
(n−1)d
q (α) . Since d is a prime

power, we deduce from Lemma 3 of Section 3.1.1 that at least one among these n symmetric
functions generates the degree d extension of K̃. In other words, there exists a k between 1
and n such that the polynomial

f̃(x) =
∏

06l<d

(x− Φl
q(Σk(α)))

is irreducible of degree d in K̃[x] ⊂ L̃[x] .

Three questions now worry us, that we consider in turn in Sections 5.1, 5.2 and 5.3.
(1) How to compute Σk(α) and its conjugates ?
(2) How to find the good integer k ?
(3) How to compute f̃(x) ∈ K̃[x] starting from Fι,A(x) ∈ L̃[x] ?

5.1. Computing symmetric functions. First, we compute β = y(B) ∈ L̃[x]/(Fι,A(x))
using Eq. (5). Let now l be an integer between 0 and dn − 1. We explain how to compute
αl = Φl

q(α). We write l = r + ns with 0 6 r < n and 0 6 s < d. Then,

αl = Φl
q(α) = Φr

q(Φs
Q(α)) .

We first compute Φs
Q(α) = x(ϕs

E(B)) = x(λsB) using Eq. (11). To this end, we write λs =

R mod ℓe+δ where 0 6 R < ℓe+δ and we multiply the ℓδ+e-torsion pointB ∈ E(L̃[x]/(Fι,A(x)))
by R using fast exponentiation. This is done at the expense of a constant times (logQ+log d)
operations in L̃[x]/(Fι,A(x)). One then raises Φs

Q(α) to the qr-th power at the expense of at

most n log q operations modulo Fι,A(x). Thus, each conjugate is computed at the expense of

d1+ε(d)(log q)2+ε(q) elementary operations.

To compute all the (Σk(α))0<k6n, one computes the n conjugates α, Φd
q(α), . . . , Φ

(n−1)d
q (α)

and one forms the corresponding polynomial of degree n. Altogether, the computation of the
symmetric functions (Σk(α))0<k6n requires

d1+ε(d)(log q)2+ε(q)

elementary operations.

5.2. Finding a generating symmetric function. One seeks an integer k between 1 and n
such that Σk(α) generates an extension of degree d of K̃ (there is at least one such integer).
So we successively test all the k between 1 and n. As n is small, this is not a problem. We
know that Σk(α) generates the degree d extension of K̃ if and only if

Φℓδ−1

q (Σk(α)) 6= Σk(α) ,

where ℓδ−1 is the unique maximal divisor of d. This condition is equivalent to

Σk(Φℓδ−1

q (α)) 6= Σk(α), or Σk(αℓδ−1) 6= Σk(α).
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One computes the Σk(αℓδ−1)’s in the same way as the Σk(α)’s, following Section 5.1. It is
then easy to compare Σk(αℓδ−1) and Σk(α). One can thus find k in

d1+ε(d)(log q)2+ε(q)

elementary operations.

5.3. Computing minimal polynomials. We now have an element Σk(α) of L̃[x]/(Fι,A(x))

and we know that it actually belongs to the degree d extension of K̃. But this is not really
visible because Σk(α) is given in the basis 1, x, . . . , xd−1 of L̃[x]/(Fι,A(x)). Still, the minimal

polynomial f̃(x) of Σk(α) has coefficients in K̃ ⊂ L̃. We compute this minimal polynomial.
We use a general algorithm for this task, such as the one appearing in recent work by Umans
and Kedlaya [24, 10]. See Theorem 2 in Section 3.1.3. This algorithm requires d1+ε(d) ×
(logQ)1+ε(Q) elementary operations. Finally, we apply the isomorphism κ : L̃ → L to every
coefficient in f̃(x) and we find a polynomial f(x) with coefficients in K ⊂ L. This polynomial
is irreducible in K[x].

All in all, the conclusion of this section is the following.

Lemma 7 (Base change). There exists a probabilistic (Las Vegas) algorithm that on input
a finite field K with characteristic p and cardinality q = pw, a prime integer ℓ not dividing
p(q−1), and a positive integer δ, computes an irreducible polynomial in K[x] of degree d = ℓδ,

at the expense of d1+ε(d) × (log q)5+ε(q) elementary operations.

6. Construction of irreducible polynomials

6.1. Finding one irreducible polynomial. Given that we represent the finite field K in a
reasonable way, as explained in the introduction, we can now state our main result.

Theorem 4. There exists a probabilistic (Las Vegas) algorithm that on input a finite field
K with characteristic p and cardinality q = pw, and a positive integer d, returns a degree
d irreducible polynomial in K[x]. The algorithm requires d1+ε(d) × (log q)5+ε(q) elementary
operations.

Proof. The algorithms runs as follows.
We first factor the degree d as d =

∏

i ℓ
δi

i , this requires O(d) elementary operations. Then,

Lemma 4 shows that it suffices to find an irreducible polynomial of degree ℓδi

i for every i. So
we may assume that d = ℓδ is a prime power.

Then, we use the construction of Lemma 1 if ℓ = p, and Lemma 2 if ℓ divides q − 1.
Otherwise Lemma 6 applies. �

Remark. One may use a faster algorithm to compute the cardinality of elliptic curves, for
instance the SEA algorithm, and hope to gain a log q speedup. But, at the time of writing, it
is not clear how the probability of failure of the SEA algorithm can be rigorously related to
the Las Vegas behavior of our construction, and we finally prefer to state a complexity result
based on Schoof’s algorithm only.

6.2. Constructing random irreducible polynomials. Let K be a finite field with car-
dinality q and characteristic p. Let d > 2 be an integer. We just explained how to quickly
compute a degree d irreducible polynomial in K[x]. We stress that the polynomials generated
by our algorithm have a very special form. This might be a problem for some applications.
In this section we explain how to construct random polynomials. We need an estimate for
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the number of degree d irreducible monic polynomials in K[x]. We recall and prove a very
classical lower bound [16, Ex. 3.26 and 3.27, page 142].

Lemma 8. Let K be a finite field with q elements. Let d > 2 be an integer. The density of
irreducible polynomials among the degree d monic polynomials is greater than or equal to

1

d
(1 − q

q − 1
(q− d

2 − q−d)).

Let L be a degree d field extension of K. The density of generators of the K-algebra L is
greater than or equal to

1 − q

q − 1
(q− d

2 − q−d).

Proof. Let Ω be an algebraic closure of K and let L be the unique degree d extension of K

inside Ω. Call Gd the set of generators of the K-algebra L. This is the set of all α in L such
that K(α) = L. Let Id be the set of degree d monic irreducible polynomials in K[x]. Let
ρ : Gd → Id be the map that to every generator α associates its minimal polynomial. Every
polynomial P (x) in Id has exactly d preimages by ρ, namely its d roots.

To enumerate the degree d monic irreducible polynomials, we just count the generators of
L over K. Let α be an element in L. If α does not generate L, then it belongs to a smaller
extension of K inside L. Therefore the complementary set of Gd in L is the union of all proper
subfields of L containing K. These subfields are in correspondence with the strict divisors of
d. To any such divisor D, we associate the unique extension of K with degree D. It has qD

elements. The set of strict divisors of d is a subset of {1, 2, 3, 4, . . . , ⌊d
2⌋}. So the number of

elements in L that do not generate it over K is upper bounded by

q + q2 + q3 + q4 + · · · + q⌊ d
2

⌋ = q
q⌊ d

2
⌋ − 1

q − 1
6

q

q − 1
(qd/2 − 1).

The cardinality of Gd is thus > qd − q
q−1(qd/2 − 1) and the cardinality of Id is

>
qd

d
− q

d(q − 1)
(qd/2 − 1). �

If d > 2, we deduce from Lemma 8 that the density of generators is > 1 − 1/(q − 1) =
(q − 2)/(q − 1). So > 1/2 if q > 3. If q = 2 and d > 4 then this density is > 1−2×2−2 = 1/2.
If q = 2 and d equals 2 (resp. 3) then this density is 1/2 (resp. 3/4). If d = 1 then this
density is 1. We deduce the following lemma.

Lemma 9 (Density of generators). Let K be a finite field with q elements. Let d > 1 be
an integer. The density of irreducible polynomials among the degree d monic polynomials is
greater than or equal to 1/2d.

Let L be a degree d field extension of K. The density of generators in the K-algebra L is
greater than or equal to 1/2.

As a corollary of Lemma 9, given an irreducible polynomial f(x) of degree d computed
with Theorem 4, one can compute a new completely random irreducible polynomial g(x) at

the expense of only d1+ε(d) × (log q)1+ε(q) elementary operations. Indeed, we choose a random
element in L, the degree d extension of K constructed from f(x), and we use Theorem 2 to
compute its minimal polynomial. We obtain an irreducible polynomial g(x) that has degree
d with probability greater than 1/2. So, we have a Las Vegas quasi-linear algorithm.
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