47 research outputs found

    Use of principal components to aggregate rare variants in case-control and family-based association studies in the presence of multiple covariates

    Get PDF
    Rare variants may help to explain some of the missing heritability of complex diseases. Technological advances in next-generation sequencing give us the opportunity to test this hypothesis. We propose two new methods (one for case-control studies and one for family-based studies) that combine aggregated rare variants and common variants located within a region through principal components analysis and allow for covariate adjustment. We analyzed 200 replicates consisting of 209 case subjects and 488 control subjects and compared the results to weight-based and step-up aggregation methods. The principal components and collapsing method showed an association between the gene FLT1 and the quantitative trait Q1 (P<10−30) in a fraction of the computation time of the other methods. The proposed family-based test has inconclusive results. The two methods provide a fast way to analyze simultaneously rare and common variants at the gene level while adjusting for covariates. However, further evaluation of the statistical efficiency of this approach is warranted

    Non-nociceptive roles of opioids in the CNS: opioids' effects on neurogenesis, learning, memory and affect.

    Get PDF
    Mortality due to opioid use has grown to the point where, for the first time in history, opioid-related deaths exceed those caused by car accidents in many states in the United States. Changes in the prescribing of opioids for pain and the illicit use of fentanyl (and derivatives) have contributed to the current epidemic. Less known is the impact of opioids on hippocampal neurogenesis, the functional manipulation of which may improve the deleterious effects of opioid use. We provide new insights into how the dysregulation of neurogenesis by opioids can modify learning and affect, mood and emotions, processes that have been well accepted to motivate addictive behaviours

    Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners

    Get PDF
    PURPOSE: Radon is a risk factor for lung cancer and uranium miners are more exposed than the general population. A genome-wide interaction analysis was carried out to identify genomic loci, genes or gene sets that modify the susceptibility to lung cancer given occupational exposure to the radioactive gas radon. METHODS: Samples from 28 studies provided by the International Lung Cancer Consortium were pooled with samples of former uranium miners collected by the German Federal Office of Radiation Protection. In total, 15,077 cases and 13,522 controls, all of European ancestries, comprising 463 uranium miners were compared. The DNA of all participants was genotyped with the OncoArray. We fitted single-marker and in multi-marker models and performed an exploratory gene-set analysis to detect cumulative enrichment of significance in sets of genes. RESULTS: We discovered a genome-wide significant interaction of the marker rs12440014 within the gene CHRNB4 (OR = 0.26, 95% CI 0.11-0.60, p = 0.0386 corrected for multiple testing). At least suggestive significant interaction of linkage disequilibrium blocks was observed at the chromosomal regions 18q21.23 (p = 1.2 × 10-6), 5q23.2 (p = 2.5 × 10-6), 1q21.3 (p = 3.2 × 10-6), 10p13 (p = 1.3 × 10-5) and 12p12.1 (p = 7.1 × 10-5). Genes belonging to the Gene Ontology term "DNA dealkylation involved in DNA repair" (GO:0006307; p = 0.0139) or the gene family HGNC:476 "microRNAs" (p = 0.0159) were enriched with LD-blockwise significance. CONCLUSION: The well-established association of the genomic region 15q25 to lung cancer might be influenced by exposure to radon among uranium miners. Furthermore, lung cancer susceptibility is related to the functional capability of DNA damage signaling via ubiquitination processes and repair of radiation-induced double-strand breaks by the single-strand annealing mechanism

    Proteogenomic convergence for understanding cancer pathways and networks

    Full text link

    High dynamic range readout architecture for SPAD array

    No full text
    International audienceIn this paper, a novel readout method to enhance the readout dynamic range of pixel based on single photon avalanche photodiode (SPAD), is presented. This method overcomes the limitation of existing methods by using a double readout technique based on both time and amplitude measurements without decreasing the fill factor. Another advantage of the proposed method is that this improvement on the dynamic range is achieved without adding extra electronics. The proposed architecture of pixel is based on analog counter

    High level model of SPAD based pixel

    No full text
    International audienc
    corecore