314 research outputs found
Lehmann-Symanzik-Zimmermann Reduction Approach to Multi-Photon Scattering in Coupled-Resonator Arrays
We present a quantum field theoretical approach based on the
Lehmann-Symanzik-Zimmermann reduction for the multi-photon scattering process
in a nano-architecture consisting of the coupled resonator arrays (CRA), which
are also coupled to some artificial atoms as the controlling quantum node. By
making use of this approach, we find the bound states of single photon for an
elementary unit, the T-type CRA, and explicitly obtain its multi-photon
scattering S-matrix in various situations. We also use this method to calculate
the multi-photon S-matrices for the more complex quantum network constructed
with main T-type CRA's, such as a H-type CRA waveguide.Comment: 15 pages, 14 figure
Women with a History of Recurrent Pregnancy Loss Are a High-Risk Population for Adverse Obstetrical Outcome:A Retrospective Cohort Study
Recurrent pregnancy loss (RPL), defined as three or more consecutive miscarriages, is hypothesized to share some of the same pathogenic factors as placenta-associated disorders. It has been hypothesized that a defect implantation causes pregnancy loss, while a partially impaired implantation may lead to late pregnancy complications. The aim of this retrospective register-based cohort study was to study the association between RPL and such disorders including pre-eclampsia, stillbirth, small for gestational age (SGA) birth, preterm birth and placental abruption. Women registered with childbirth(s) in the Swedish Medical Birth Register (MFR) were included in the cohort. Pregnancies of women diagnosed with RPL (exposed) in the National Patient Register (NPR), were compared with pregnancies of women without RPL (unexposed/reference). Obstetrical outcomes, in the first pregnancy subsequent to the diagnosis of RPL (n = 4971), were compared with outcomes in reference-pregnancies (n = 57,410). Associations between RPL and placental dysfunctional disorders were estimated by odds ratios (AORs) adjusting for confounders, with logistic regression. RPL women had an increased risk for pre-eclampsia (AOR 1.45; 95% CI; 1.24– 1.69), stillbirth <37 gestational weeks (GWs) (AOR 1.92; 95% CI; 1.22–3.02), SGA birth (AOR 1.97; 95% CI; 1.42–2.74), preterm birth (AOR 1.46; 95% CI; 1.20–1.77), and placental abruption <37 GWs (AOR 2.47; 95% CI; 1.62–3.76) compared with pregnancies by women without RPL. Women with RPL had an increased risk of pregnancy complications associated with placental dysfunction. This risk population is, therefore, in need of improved antenatal surveillance
Hadronic Contributions to the Photon Vacuum Polarization and their Role in Precision Physics
I review recent evaluations of the hadronic contribution to the shift in the
fine structure constant and to the anomalous magnetic moment of the muon.
Substantial progress in a precise determination of these important observables
is a consequence of substantially improved total cross section measurement by
the CMD-2 and BES II collaborations and an improved theoretical understanding.
Prospects for further possible progress is discussed.Comment: 17 pages 7 figures 2 tables, update: incl. CMD-2 data, reference
Model-independent determination of the parity of hyperons
Based on reflection symmetry in the reaction plane, it is shown that
measuring the transverse spin-transfer coefficient in the reaction directly determines the parity of the produced cascade
hyperon in a model-independent way as , where
is the parity. This result based on Bohr's theorem provides a completely
general, universal relationship that applies to the entire hyperon spectrum. A
similar expression is obtained for the photoreaction by
measuring both the double-polarization observable and the photon-beam
asymmetry . Regarding the feasibility of such experiments, it is
pointed out that the self-analyzing property of the 's can be invoked,
thus requiring only a polarized nucleon target.Comment: 4 pages, REVTeX, to be published in Phys. Rev.
Revisiting soliton contributions to perturbative amplitudes
Open Access funded by SCOAP3. CP is
a Royal Society Research Fellow and partly supported by the U.S. Department of Energy
under grants DOE-SC0010008, DOE-ARRA-SC0003883 and DOE-DE-SC0007897. ABR
is supported by the Mitchell Family Foundation. We would like to thank the Mitchell
Institute at Texas A&M and the NHETC at Rutgers University respectively for hospitality
during the course of this work. We would also like to acknowledge the Aspen Center for
Physics and NSF grant 1066293 for a stimulating research environment
Ghost Busting: PT-Symmetric Interpretation of the Lee Model
The Lee model was introduced in the 1950s as an elementary quantum field
theory in which mass, wave function, and charge renormalization could be
carried out exactly. In early studies of this model it was found that there is
a critical value of g^2, the square of the renormalized coupling constant,
above which g_0^2, the square of the unrenormalized coupling constant, is
negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the
Lee model becomes non-Hermitian. It was also discovered that in this
non-Hermitian regime a new state appears whose norm is negative. This state is
called a ghost state. It has always been assumed that in this ghost regime the
Lee model is an unacceptable quantum theory because unitarity appears to be
violated. However, in this regime while the Hamiltonian is not Hermitian, it
does possess PT symmetry. It has recently been discovered that a non-Hermitian
Hamiltonian having PT symmetry may define a quantum theory that is unitary. The
proof of unitarity requires the construction of a new time-independent operator
called C. In terms of C one can define a new inner product with respect to
which the norms of the states in the Hilbert space are positive. Furthermore,
it has been shown that time evolution in such a theory is unitary. In this
paper the C operator for the Lee model in the ghost regime is constructed
exactly in the V/N-theta sector. It is then shown that the ghost state has a
positive norm and that the Lee model is an acceptable unitary quantum field
theory for all values of g^2.Comment: 20 pages, 9 figure
Heavy quark medium polarization at next-to-leading order
We compute the imaginary part of the heavy quark contribution to the photon
polarization tensor, i.e. the quarkonium spectral function in the vector
channel, at next-to-leading order in thermal QCD. Matching our result, which is
valid sufficiently far away from the two-quark threshold, with a previously
determined resummed expression, which is valid close to the threshold, we
obtain a phenomenological estimate for the spectral function valid for all
non-zero energies. In particular, the new expression allows to fix the overall
normalization of the previous resummed one. Our result may be helpful for
lattice reconstructions of the spectral function (near the continuum limit),
which necessitate its high energy behaviour as input, and can in principle also
be compared with the dilepton production rate measured in heavy ion collision
experiments. In an appendix analogous results are given for the scalar channel.Comment: 43 pages. v2: a figure and other clarifications added, published
versio
Two-Loop N_F=1 QED Bhabha Scattering Differential Cross Section
We calculate the two-loop virtual, UV renormalized corrections at order
\alpha^4 (N_F=1) in QED to the Bhabha scattering differential cross section,
for arbitrary values of the squared c.m. energy s and momentum transfer t, and
on-shell electrons and positrons of finite mass m. The calculation is carried
out within the dimensional regularization scheme; the remaining IR divergences
appear as polar singularities in (D-4). The result is presented in terms of 1-
and 2-dimensional harmonic polylogarithms, of maximum weight 3.Comment: 61 pages, 4 figures. Overall sign mistakes in some formulas in
appendix corrected, references adde
Finite calculation of divergent selfenergy diagrams
Using dispersive techniques, it is possible to avoid ultraviolet divergences
in the calculation of Feynman diagrams, making subsequent regularization of
divergent diagrams unnecessary. We give a simple introduction to the most
important features of such dispersive techniques in the framework of the
so-called finite causal perturbation theory. The method is also applied to the
'divergent' general massive two-loop sunrise selfenergy diagram, where it leads
directly to an analytic expression for the imaginary part of the diagram in
accordance with the literature, whereas the real part can be obtained by a
single integral dispersion relation. It is pointed out that dispersive methods
have been known for decades and have been applied to several nontrivial Feynman
diagram calculations.Comment: 15 pages, Latex, one figure, added reference
The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary
The Actinopterygii or ray-finned fishes comprise, in addition to the large superorder of teleosts, four other superorders, namely the cladistians, the chondrosteans, the ginglymodes, and the halecomorphs, each with a limited number of species. The telencephalon of actinopterygian fishes differs from that in all other vertebrates in that it consists of a pair of solid lobes. Lateral ventricles surrounded by nervous tissue are entirely lacking. At the end of the nineteenth century, the theory was advanced that the unusual configuration of the forebrain in actinopterygians results from an outward bending or eversion of its lateral walls. This theory was accepted by some authors, rejected or neglected by others, and modified by some other authors. The present paper is based on the data derived from the literature, complemented by new observations on a large collection of histological material comprising specimens of all five actinopterygian superorders. The paper consists of three parts. In the first, a survey of the development of the telencephalon in actinopterygian fishes is presented. The data collected show clearly that an outward bending or eversion of the pallial parts of the solid hemispheres is the principal morphogenetic event in all five actinopterygian superorders. In all of these superorders, except for the cladistians, eversion is coupled with a marked thickening of the pallial walls. In the second part, some aspects of the general morphology of the telencephalon in mature actinopterygians are highlighted. It is pointed out that (1) the degree of eversion varies considerably among the various actinopterygian groups; (2) eversion leads to the transformation of the telencephalic roof plate into a wide membrane or tela choroidea, which is bilaterally attached to the lateral or ventrolateral aspect of the solid hemispheres; (3) the lines of attachment or taeniae of the tela choroidea form the most important landmarks in the telencephalon of actinopterygians, indicating the sites where the greatly enlarged ventricular surface of the hemispheres ends and its reduced meningeal surface begins; (4) the meningeal surface of the telencephalon shows in most actinopterygians bilaterally a longitudinally oriented sulcus externus, the depth of which is generally positively correlated with the degree of eversion; (5) a distinct lateral olfactory tract, occupying a constant topological position close to the taenia, is present in all actinopterygians studied; and (6) this tract is not homologous to the tract of the same name in the evaginated and inverted forebrains of other groups of vertebrates. In the third and final section, the concept that the structural organization of the pallium in actinopterygians can be fully explained by a simple eversion of its walls, and the various theories, according to which the eversion is complicated by extensive shifts of its constituent cell groups, are discussed and evaluated. It is concluded that there are no reasons to doubt that the pallium of actinopterygian fishes is the product of a simple and complete eversion
- …