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Model-independent determination of the parity of � hyperons
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Based on reflection symmetry in the reaction plane, it is shown that measuring the transverse spin-transfer
coefficient Kyy in the K̄N → K� reaction directly determines the parity of the produced cascade hyperon in a
model-independent way as π� = Kyy , where π� = ±1 is the parity. This result based on Bohr’s theorem provides
a completely general, universal relationship that applies to the entire hyperon spectrum. A similar expression is
obtained for the photoreaction γN → KK� by measuring both the double-polarization observable Kyy and the
photon-beam asymmetry �. Regarding the feasibility of such experiments, it is pointed out that the self-analyzing
property of the �s can be invoked, thus requiring only a polarized nucleon target.
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The spectrum of multistrangeness hyperons is largely
unknown and much is yet to be explored. For example,
the flavor SU(3) symmetry leads to the expectation that the
number of � resonances is equal to the number of nonstrange
baryon resonances (i.e., the nucleon and � resonances).
However, the compilation of particle data found in the Particle
Data Group Review (PDG) [1] shows that, to date, only
a dozen �s have been discovered compared to about 40
nonstrange baryon resonances. Furthermore, only two of them,
�(1318) and �(1530), have four-star status according to the
PDG. One of the reasons for this situation is that the �

hyperons, being particles with strangeness S = −2, can only
be produced via indirect processes from the nucleon, with
very small production yields that makes them difficult to
measure. Moreover, the situation is exacerbated by the lack
of facilities that can produce antikaon beams. As a result,
nothing of significance regarding � resonances has been added
to the PDG listings during the last two decades [1]. The
situation is going to change very soon with the availability of
the antikaon beam at the Japan Proton Accelerator Research
Complex (J-PARC) facility which has started its operation just
recently. Since the antikaon has strangeness S = −1, hyperons
with S = −2 (�) can be produced directly in reactions such
as K̄N → K� with sufficiently large yields. Indeed, the
study of multistrangeness hyperons is one of the major parts
of the physics programs at J-PARC [2,3]. Furthermore, the
PANDA Collaboration has also proposed an investigation of
the p̄p → �̄� reaction at the Facility for Antiproton and
Ion Research (FAIR) [4,5]. Also, the CLAS Collaboration
at the Thomas Jefferson National Accelerator Facility (JLab)
has established the feasibility of investigating � spectroscopy
via photoproduction reactions like γp → K+K+�− and
γp → K+K+π−�0 [6–8]. A dedicated experiment for these
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reactions has been carried out and the data for the total and
differential cross sections as well as the K+K+ and K+�−
invariant mass distributions for the γp → K+K+�− reaction
have been reported in Ref. [9]. Thus, a data set measured for
the exclusive production of the � in photon-nucleon scattering
now exists.

Theoretical studies of the production of � hyperons also
started only recently. For example, the production mechanisms
for � photoproduction (i.e., γp → K+K+�−) was investi-
gated in Refs. [10,11] and recent works for the K̄N → K�

reaction were reported in Refs. [12,13].
The investigation of multistrangeness baryons is expected

to shed light on our understanding of the structure of baryons
and it will allow us to distinguish various phenomenological
models of the baryon-mass spectrum [14–18]. Knowing the
parity quantum number, in particular, is of crucial importance
in baryon spectroscopy since it heavily depends on the internal
structure of the baryon. However, the experimental extraction
of the spin-parity quantum numbers is very difficult. The parity
quantum number of the � ground state, �(1318) in particular,
has not been measured yet but is assigned to be positive in the
PDG compilation based on the quark-model predictions [1].
Therefore, given this uncertain situation, reliable experimental
determinations of the quantum numbers of the � ground state
and its resonances are important and timely and of particular
interest for the experimental programs at facilities that can
produce cascades, like J-PARC and others.

There are some earlier efforts to determine the spin-parity
quantum numbers of a cascade resonance, in particular of
�∗(1820), through an analysis of the moments of its decay
products [19–21]. The procedure of Ref. [21] permits the
determination of both spin and parity. However, it is limited to
resonances above threshold with odd relative orbital angular
momentum between the decay products.

In this article, we show an alternative, completely model-
independent, and universal way of determining the parity of
any � hyperon with an arbitrary spin. This is based on Bohr’s
theorem [22] which is a consequence of the invariance of the
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transition amplitude under rotation and parity inversion and,
in particular, reflection symmetry in the reaction plane. To
this end, we consider the reaction K̄N → K�, where the �

hyperon has spin j . This is is one of the reactions that will
be studied at J-PARC. For completeness, we also consider the
parity determination of � via the photoproduction reaction
γN → KK�, which can be performed at JLab.

While completely general, the foremost practical use of the
method lies with the ground state of the hyperon, as we shall
argue below in the paragraph following Eq. (8). Therefore, we
first consider the case of a spin j = 1/2 cascade hyperon and
show explicitly that the transverse spin-transfer coefficient in
� production in the K̄N scattering is directly related to the
parity of the � hyperon. We will then generalize the results
to the case of a � hyperon with an arbitrary spin j . The most
general spin structure of the reaction amplitude, consistent
with symmetry principles, for the process K̄(q) + N (p) →
K(q ′) + �(p′), where the arguments q, p, q ′, and p′ stand for
the four-momenta of the respective particles, is given by

M̂+ = M0 + M2σ · n̂2, (1a)

M̂− = M1σ · n̂1 + M3σ · q̂, (1b)

for positive and negative parity � (M̂+ and M̂−), respectively.
Here, σ = (σ1, σ2, σ3) is the Cartesian vector made up of the
three Pauli matrices σi , with indices 1, 2, 3 corresponding to
spatial axes x, y, z. The unit vectors n̂1 and n̂2 are defined as
n̂1 ≡ (q × q ′) × q/|(q × q ′) × q| and n̂2 ≡ q × q ′/|q × q ′|,
respectively.

Without loss of generality, we may choose the coordinate
systems such that q is along the positive z axis and n̂2 is along
the positive y axis. Then n̂1 is the unit vector along the positive
x axis. The plane containing the vectors q and n̂1 is the reaction
plane and n̂2 is perpendicular to that plane.

The reaction amplitudes in Eqs. (1) can be summarily
written as

M̂ =
3∑

m=0

Mmσm, (2)

where in addition to the three Pauli matrices σi (i = 1, 2, 3),
σ0 here is the 2 × 2 unit matrix. For a positive-parity �, M1 =
M3 = 0 and M̂ reduces to M̂+, and for a negative-parity �, M̂
reduces to M̂− because M0 = M2 = 0. Expressing amplitudes
utilizing M̂ of Eq. (2), the unpolarized cross section is given
by

dσ

d�
≡ 1

2
Tr(M̂M̂†) =

3∑

m=0

|Mm|2 (3)

and the (diagonal) spin-transfer coefficient Kii (i = 1, 2, 3) is
obtained as

dσ

d�
Kii ≡ 1

2
Tr(M̂σiM̂

†σi)

= |M0|2 + |Mi |2 −
∑

k �=i

|Mk|2. (4)

In terms of the cross sections, the spin-transfer coefficient Kii

is given by

Kii = [dσi(++) + dσi(−−)] − [dσi(+−) + dσi(−+)]

[dσi(++) + dσi(−−)] + [dσi(+−) + dσi(−+)]
,

(5)

where dσi stands for the differential cross section with the
polarization of the target nucleon and of the produced cascade
along the i direction. The first and second ± arguments of dσi

indicate the parallel (+) or antiparallel (−) spin-alignment
along the i direction of the target nucleon and produced
cascade, respectively.

In general, Kii depends on the energy and scattering angle.
However, from Eqs. (3) and (4), it follows immediately that
Kyy is constant and that it provides the parity π� of �, viz.

π� = ±1 = Kyy, (6)

where the sign directly corresponds to positive or negative
parity. This result is a direct consequence of the spin structures
of the reaction amplitudes for positive and negative parity �

as exhibited in Eqs. (1), which, in turn, is a consequence of
reflection symmetry in the reaction plane.

The above results can be straightforwardly generalized to
a � with an arbitrary spin j by invoking Bohr’s theorem [22]
written in the form [23]

πf i = (−1)Mf −Mi . (7)

Here, πf i denotes the product of the intrinsic parities of
all the particles in the initial (i) and final (f ) states, while
Mi (Mf ) stands for the sum of the spin projection quantum
numbers of the initial-state (final-state) particles along the axis
perpendicular to the reaction plane, (i.e., n̂2 or the ŷ axis). For
the reaction in question, πf i = π�, and thus

π� = (−1)Mf −Mi = Kyy. (8)

The results given in Eqs. (6) and (8), therefore, directly
determine the parity of the produced � hyperon.

To discuss the feasibility of this determination, the present
results show that, to obtain the parity of �, one needs
to measure the double-polarization observable Kyy , which
is usually extremely challenging experimentally. The task
simplifies considerably if the weak decay modes of the hyperon
can be separated from the strong ones, which is particularly
true for the ground state where strong decays are absent
altogether. One may then employ the fact that the cascade states
are self-analyzing under weak decays [24], thus requiring only
a polarized nucleon target to determine the polarization of the
�s. Such a polarized target may be available at J-PARC in the
foreseeable future [25], which would make this experiment
possible for the spin-1/2 ground state of �. The feasibility of
such an experiment hinges on the cross-section yield with
a polarized nucleon target, which should be smaller than
the unpolarized cross section by roughly a factor of 10 if
one assumes a typical degree of polarization of ∼20% of
the target nucleon. Since the unpolarized cross section for
K−p → K+�− is of the order of 10 μb/sr around

√
s ∼

2 GeV [26–31], one might expect cross-section yields of the
order of 1 μb/sr with the polarized nucleon target.
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It should be mentioned that, in principle, for j = 1/2 the
parity of the cascade resonance may also be determined by
measuring single-polarization observables; namely, the target-
nucleon asymmetry Ti and the recoil-cascade polarization Pi ,

dσ

d�
Ti ≡ 1

2
Tr(MσiM

†) = 2Re[M0M
∗
i ] + 2Im[MjM

∗
k ],

(9a)

dσ

d�
Pi ≡ 1

2
Tr(MM†σi) = 2Re[M0M

∗
i ] − 2Im[MjM

∗
k ],

(9b)

where the subscripts (i, j, k) run cyclically [i.e., (1,2,3),
(3,1,2), (2,3,1)]. Then, with the amplitudes given by Eqs. (1),
it follows immediately that

dσ

d�
(Ty + Py) = 4Re[M0M

∗
2 ], (10a)

dσ

d�
(Ty − Py) = 0 (10b)

for positive-parity cascade and

dσ

d�
(Ty + Py) = 0, (11a)

dσ

d�
(Ty − Py) = 4Im[M3M

∗
1 ] (11b)

for negative-parity cascade. The equations here reveal that, if
the measured combination Ty + Py is different from zero the
parity of the cascade is positive; conversely, if the combination
Ty − Py is different from zero, the parity is negative. Here,
it should be noted that the usefulness of these expressions
hinges on how reliably the respective right-hand sides of
Eqs. (10a) and (11b) can be determined to be different from
zero experimentally, which may not be possible if any one of
the amplitudes Mi (i = 0, 1, 2, 3) is too small. This magnitude
problem aside, this experiment would be easier to set up
because it requires only measuring the single-polarization
observables, Ty and Py . The determination of the double-
polarization observable Kyy , by contrast, while requiring a
more complex experimental setup, is free of any potential
magnitude problem.

The parity of the cascade hyperon may also be determined
in a model-independent way in the photoproduction reaction
γN → KK� that will be studied at JLab [32]. Since kaons
are spin-zero particles, in this case one can simply make use
of the results derived in Ref. [33].1 One finds, in particular,
among the various spin observables and combinations of spin
observables for this reaction that can be used in principle
to determine the parity of �, the transverse spin-transfer
coefficient with the unpolarized photon beam Kyy and the

1Details of the derivation of the spin-structure of the photopro-
duction amplitudes used in Ref. [33], especially those involving a
negative-parity baryon, can be found in Ref. [34].

photon-beam asymmetry � are related to the parity of the �

resonance by

π� = Kyy

�
. (12)

Obviously, here the measurements of spin observables, es-
pecially the double-polarization observable Kyy , are more
challenging than in hadronic reactions due to much smaller
cross-section yields.

The relations found here for the � hyperon can also be
applied to the parity determination of the � hyperon in
the reactions K̄N → KK� and γN → KKK�. Because
the production yields are much smaller for the � hyperons
than those for the � hyperons, the required measurements of
polarization observables in � production would be much more
difficult. At any rate, our results given in Eqs. (6), (8), and (12)
can be used to determine the parity of � hyperons in principle.
However, because of the presence of an additional kaon in �

production, π� in these relations should be replaced by −π�.
In summary, we have shown that, based on reflection

symmetry in the reaction plane, the parity of a � hyperon
with an arbitrary spin can be directly determined in a model-
independent, universal manner by measuring the transverse
spin-transfer coefficient Kyy in the K̄N → K� reaction that
will be studied at the J-PARC facility. Our result is particularly
relevant for the ground state of the � since, in this case, one
may exploit the fact that the � is self-analyzing under weak
decays. In principle, however, our theoretical result applies to
the entire cascade spectrum. The parity of the cascade hyperon
may also be determined in the photoproduction reaction
γN → KK�, provided one can measure the transverse spin-
transfer coefficient with the unpolarized photon beam and the
beam asymmetry with linearly polarized photons. We also
mention that, since the respective quantities Kyy and Kyy/�

for both types of experiments need to be equal to known
constants (i.e., π� = ±1), apart from providing the parity of
�, measurements of these quantities also provide some lower
limits for the systematic errors of such experiments. Regarding
the practical feasibility of such experiments, we mention that
the self-analyzing feature of the �s will help if their weak
decay modes can be measured to determine the polarization
of these � hyperons. Finally, we add that the present
discussions can also be applied to the parity determination of �

hyperons.
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