325 research outputs found
Coarse-grained simulations of flow-induced nucleation in semi-crystalline polymers
We perform kinetic Monte Carlo simulations of flow-induced nucleation in
polymer melts with an algorithm that is tractable even at low undercooling. The
configuration of the non-crystallized chains under flow is computed with a
recent non-linear tube model. Our simulations predict both enhanced nucleation
and the growth of shish-like elongated nuclei for sufficiently fast flows. The
simulations predict several experimental phenomena and theoretically justify a
previously empirical result for the flow-enhanced nucleation rate. The
simulations are highly pertinent to both the fundamental understanding and
process modeling of flow-induced crystallization in polymer melts.Comment: 17 pages, 6 eps figure
Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by the degeneration of alpha motor neurons in the spinal cord, leading to muscular atrophy. SMA is caused by deletions or mutations in the survival motor neuron 1 gene (SMN1). In humans, a nearly identical copy gene, SMN2, is present. Because SMN2 has been shown to decrease disease severity in a dose-dependent manner, SMN2 copy number is predictive of disease severity.
To develop a treatment algorithm for SMA-positive infants identified through newborn screening based upon SMN2 copy number.
A working group comprised of 15 SMA experts participated in a modified Delphi process, moderated by a neutral third-party expert, to develop treatment guidelines.
The overarching recommendation is that all infants with two or three copies of SMN2 should receive immediate treatment (n = 13). For those infants in which immediate treatment is not recommended, guidelines were developed that outline the timing and appropriate screens and tests to be used to determine the timing of treatment initiation.
The identification SMA affected infants via newborn screening presents an unprecedented opportunity for achievement of maximal therapeutic benefit through the administration of treatment pre-symptomatically. The recommendations provided here are intended to help formulate treatment guidelines for infants who test positive during the newborn screening process
Security and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer
open access articleBringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form.
In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user's input with at most complexity instead of , where is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly
The immunohistochemical localization of alpha1-antichymotrypsin and fibronectin and its meaning for the determination of the vitality of human skin wounds
Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds
We analyzed the distribution of fibronectin in routinely embedded tissue specimens from 53 skin wounds and 6 postmortem wounds. In postmortem wounds a faint but focal positive staining was exclusively found at the margin of the specimens which dit not extend into the adjacent stroma. Vital wounds were classified into 3 groups. The first comprising lesions with wound ages ranging from a few seconds to 30 min, the second comprising those with wound ages upt to 3 weeks, and the third group with lesions more than 3 weeks old. Ten out of 17 lesions with a wound age up to 30 min showed a clear positive reaction within the wound area. Three specimens in this group were completely negative, while in 4 additional cases the result was not significantly different from postmortem lesions. These 7 cases were characterized by acute death with extremely short survival times (only seconds). In wounds up to 3 weeks old fibronectin formed a distinct network containing an increasing number of inflammatory cells corresponding to the wound age. In 2 cases with a survival time of 17 days and in all wounds older than 3 weeks fibronectin was restricted to the surface of fibroblasts and to parallel arranged fibers in the granulation tissue without any network structures. We present evidence that fibronectin is a useful marker for vital wounds with a survival time of more than a few minutes. Fibronectin appears before neutrophilic granulocytes migrate into the wound area. Since a faint positive fibronectin staining is seen in postmortem lesions and bleedings, we propose that only those wounds which show strong positive fibronectin staining also extending into the adjacent stroma should be regarded as vital
The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development
Despite multiple publications on potential therapies for neuromuscular diseases (NMD) in cell and animal models only a handful reach clinical trials. The ability to prioritise drug development according to objective criteria is particularly critical in rare diseases with large unmet needs and a limited numbers of patients who can be enrolled into clinical trials. TREAT-NMD Advisory Committee for Therapeutics (TACT) was established to provide independent and objective guidance on the preclinical and development pathway of potential therapies (whether novel or repurposed) for NMD. We present our experience in the establishment and operation of the TACT. TACT provides a unique resource of recognized experts from multiple disciplines. The goal of each TACT review is to help the sponsor to position the candidate compound along a realistic and well-informed plan to clinical trials, and eventual registration. The reviews and subsequent recommendations are focused on generating meaningful and rigorous data that can enable clear go/no-go decisions and facilitate longer term funding or partnering opportunities. The review process thereby acts to comment on viability, de-risking the process of proceeding on a development programme. To date TACT has held 10 review meeting and reviewed 29 program applications in several rare neuromuscular diseases: Of the 29 programs reviewed, 19 were from industry and 10 were from academia; 15 were for novel compounds and 14 were for repurposed drugs; 16 were small molecules and 13 were biologics; 14 were preclinical stage applications and 15 were clinical stage applications. 3 had received Orphan drug designation from European Medicines Agency and 3 from Food and Drug Administration. A number of recurrent themes emerged over the course of the reviews and we found that applicants frequently require advice and education on issues concerned with preclinical standard operating procedures, interactions with regulatory agencies, formulation, repurposing, clinical trial design, manufacturing and ethics. Over the 5 years since its establishment TACT has amassed a body of experience that can be extrapolated to other groups of rare diseases to improve the community's chances of successfully bringing new rare disease drugs to registration and ultimately to marke
Adaptive Oblivious Transfer and Generalization
International audienceOblivious Transfer (OT) protocols were introduced in the seminal paper of Rabin, and allow a user to retrieve a given number of lines (usually one) in a database, without revealing which ones to the server. The server is ensured that only this given number of lines can be accessed per interaction, and so the others are protected; while the user is ensured that the server does not learn the numbers of the lines required. This primitive has a huge interest in practice, for example in secure multi-party computation, and directly echoes to Symmetrically Private Information Retrieval (SPIR). Recent Oblivious Transfer instantiations secure in the UC framework suf- fer from a drastic fallback. After the first query, there is no improvement on the global scheme complexity and so subsequent queries each have a global complexity of O(|DB|) meaning that there is no gain compared to running completely independent queries. In this paper, we propose a new protocol solving this issue, and allowing to have subsequent queries with a complexity of O(log(|DB|)), and prove the protocol security in the UC framework with adaptive corruptions and reliable erasures. As a second contribution, we show that the techniques we use for Obliv- ious Transfer can be generalized to a new framework we call Oblivi- ous Language-Based Envelope (OLBE). It is of practical interest since it seems more and more unrealistic to consider a database with uncontrolled access in access control scenarii. Our approach generalizes Oblivious Signature-Based Envelope, to handle more expressive credentials and requests from the user. Naturally, OLBE encompasses both OT and OSBE, but it also allows to achieve Oblivious Transfer with fine grain access over each line. For example, a user can access a line if and only if he possesses a certificate granting him access to such line. We show how to generically and efficiently instantiate such primitive, and prove them secure in the Universal Composability framework, with adaptive corruptions assuming reliable erasures. We provide the new UC ideal functionalities when needed, or we show that the existing ones fit in our new framework. The security of such designs allows to preserve both the secrecy of the database values and the user credentials. This symmetry allows to view our new approach as a generalization of the notion of Symmetrically PIR
Compact E-Cash and Simulatable VRFs Revisited
Abstract. Efficient non-interactive zero-knowledge proofs are a powerful tool for solving many cryptographic problems. We apply the recent Groth-Sahai (GS) proof system for pairing product equations (Eurocrypt 2008) to two related cryptographic problems: compact e-cash (Eurocrypt 2005) and simulatable verifiable random functions (CRYPTO 2007). We present the first efficient compact e-cash scheme that does not rely on a random oracle. To this end we construct efficient GS proofs for signature possession, pseudo randomness and set membership. The GS proofs for pseudorandom functions give rise to a much cleaner and substantially faster construction of simulatable verifiable random functions (sVRF) under a weaker number theoretic assumption. We obtain the first efficient fully simulatable sVRF with a polynomial sized output domain (in the security parameter).
Affiliation-Hiding Authentication with Minimal Bandwidth Consumption
Part 3: Lightweight AuthenticationInternational audienceAffiliation-Hiding Authentication (AHA) protocols have the seemingly contradictory property of enabling users to authenticate each other as members of certain groups, without revealing their affiliation to group outsiders. Of particular interest in practice is the group-discovering variant, which handles multiple group memberships per user. Corresponding solutions were only recently introduced, and have two major drawbacks: high bandwidth consumption (typically several kilobits per user and affiliation), and only moderate performance in scenarios of practical application.While prior protocols have O(n2) time complexity, where n denotes the number of affiliations per user, we introduce a new AHA protocol running in O(nlogn) time. In addition, the bandwidth consumed is considerably reduced. We consider these advances a major step towards deployment of privacy-preserving methods in constraint devices, like mobile phones, to which the economization of these resources is priceless
- …
