
TMPS: Ticket-Mediated Password Strengthening
John Kelsey

National Institute of Standards and Technology,

Gaithersburg, MD, USA

Department of Electrical Engineering, ESAT/COSIC

KU Leuven, Belgium

Dana Dachman-Soled
∗

Department of Electrical and Computer Engineering

University of Maryland

College Park, MD, USA

Sweta Mishra

National Institute of Standards and Technology

Gaithersburg, MD, USA

Meltem Sönmez Turan

National Institute of Standards and Technology

Gaithersburg, MD, USA

ABSTRACT
We introduce the notion of Ticket-Mediated Password Strength-

ening (TMPS), a technique for allowing users to derive keys from

passwords while imposing a strict limit on the number of guesses of

their password any attacker can make, and strongly protecting the

users’ privacy. We describe the security requirements of TMPS, and

then a set of efficient and practical protocols to implement a TMPS

scheme, requiring only hash functions, CCA2-secure encryption,

and blind signatures. We provide several variant protocols, includ-

ing an offline symmetric-only protocol that uses a local trusted

computing environment, and online variants that use group sig-

natures or stronger trust assumptions instead of blind signatures.

We formalize the security of our scheme by defining an ideal func-

tionality in the Universal Composability (UC) framework, and by

providing game-based definitions of security. We prove that our

protocol realizes the ideal functionality in the random oracle model

(ROM) under adaptive corruptions with erasures, and prove that

security with respect to the ideal/real definition implies security

with respect to the game-based definitions.

1 INTRODUCTION
In many real-world cryptosystems, the user’s password is the great-

est practical weakness. Commonly, the user enters a memorized

password or passphrase, which is processed using a password-based

key derivation function, to get a symmetric key. Knowledge of this

key allows the attacker to completely violate the security of a sys-

tem he has physically compromised–to read the user’s files, sign

arbitrary things with her private key, spend her bitcoins, etc.

Deriving a key from a password is an old, well-studied problem[19,

26, 31]. The practical difficulty comes from the ability of an attacker

to run a parallel password search. After stealing the user’s device,

the attacker is able to run an offline attack on a large number of

machines/processors, perhaps trying billions of different password

guesses per second until the user’s password is found. Few users

can memorize a password capable of withstanding such an attack

for long.

In this paper, we propose a novel method to approach this prob-

lem, called Ticket-Mediated Password Strengthening (TMPS). In-

formally, this works as follows: When the user wants to produce

∗
Supported in part by NSF grants #CNS-1840893, #CNS-1453045 (CAREER), by a re-

search partnership award fromCisco and by financial assistance award 70NANB15H328

from the U.S. Department of Commerce, National Institute of Standards and

Technology.

a new password-derived key, she runs a protocol with a server to

produce a set of t tickets–bitstrings which she stores locally. Later,

when she wants to unlock this key using her password, she runs

another protocol with the server, providing (and discarding) one of

these tickets. The password can only be used to unlock the user’s

key with the server’s help, and the server will not provide this help

without a ticket that has never before been used.

The result is that the user can establish a hard limit on the

number of possible guesses of the password any attacker can make–

if she has only 100 tickets on her device, then an attacker who

compromises the device can never try more than 100 guesses of

her password.

Our approach provides strong privacy guarantees for the user

with respect to the server, and unlike many proposed password-

hardening schemes in the literature, is focused on user-level key

derivation problems, rather than on online authentication to some

web service. We also provide a mechanism to allow the server to

control which users it provides services to, without violating the

users’ privacy.

Among other advantages, our scheme gives users a security met-

ric that is human-meaningful–the maximum number of guesses

the attacker can ever have against their password. Hardness pa-

rameters of password hashes, or entropy estimates of a password,

are meaningful only to security experts; the maximum number of

attacker guesses that will be allowed is much easier to understand.

On the other hand, our scheme imposes the need to be online in

order to unlock a key secured by a password. (Though we provide

variant schemes which can be used offline.)

1.1 Our Results
• We introduce the notion of Ticket-Mediated Password Strength-

ening (TMPS), a mechanism for allowing users to derive keys

from passwords while imposing a strict limit on the number

of guesses of their password any attacker can make, and

strongly protecting the users’ privacy.

• We formalize the security requirements of our new notion

of TMPS, both by introducing game-based definitions (See

Appendix B) as well as defining a corresponding ideal func-

tionality in the Universal Composability (UC) framework

(See Section 5).

• We present efficient protocols realizing our new notion. Our

basic protocol requires only hash functions, CCA2-secure

encryption, and blind signatures (See Section 4).



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

• We prove that our protocol UC-realizes the aforementioned

ideal functionality in the random oracle model (ROM) under

adaptive corruptions with erasures (See Appendix C) and

prove that security with respect to the Ideal/Real definition

implies security with respect to the game-based definitions

(See Appendix B).

• We present several variants of our protocol, including an

offline version of our protocol using a local hardware secu-

rity module (HSM) or trusted execution environment, and

variants that make use of group signatures, proofs of work,

or weaker security assumptions to ensure user privacy while

still preventing overuse of server resources (See Section 6).

• Finally, we discuss efficient implementations and perfor-

mance, in Section 7, and consider some questions left open

by this research in Section 8.

1.2 Related Work
A long list of work (e.g., [5, 6, 32]) focuses on Password Authenti-

cated Key Exchange (PAKE) protocols where the user and server

share a password to securely establish a session key. These pro-

tocols have some similarities to our scheme (in particular the use

of a trusted server), but their details (key generation) and usage

are quite different. Typically, the PAKE protocols are vulnerable

to offline dictionary attacks after server compromise, though this

problem has been tackled in recent proposals such as the Opaque

protocol [17]. Another related concept known as Password Pro-

tected Secret Sharing (PPSS) as described in [16], requires many

servers to hold some share of a key; a secret sharing scheme is used

to reconstruct them, secured by a password.

Many significant works on password security focus on password-

based authentication systems. In [25], Mani describes a scheme that

uses a server to assist in password hashing, but without any con-

cern for user privacy–the goal in that scheme was to harden the

password file by incorporating a pseudorandom function (PRF) com-

puted on a single-purpose machine. Similarly, [2, 27, 28] describe a

scheme with a separately-stored secret key in a crypto-server to

strengthen password hashing, an informal description of the con-

cept of password hardening, later formally defined in [13, 23, 29].

Our scheme differs in its goal;but is related to password hardening
in using a separate server or device, in order to limit password

guessing attacks.

A proposal by Lai et al. [22] defines a password hardening encryp-
tion scheme which provides substantial protection from password-

cracking attacks by rate-limiting password cracking attempts as-

suming the crypto server is not compromised. Our scheme differs

in many ways, most notably in the use of tickets for decryption,

and in the assurance of user privacy. Also, our scheme focuses on

the setting of password-based key derivation on the user’s device,

rather than on a server the user trusts with her data.

Still another line of work introduces the notion of password-

based threshold authentication [1] for token-based authentication

in single sign-on setting–in their scheme, any subset of ℓ of n
servers participate in verifying the user’s password and generating

a token.

There is also a rich literature in server-assisted computation

[3, 14, 20, 21] which preserves the user’s privacy. Our scheme dif-

fers from most of this work in that we are not trying to offload

computational work to the server, we are just using a server to

limit the number of times some computation may be done. In our

proposal, we use standard algorithms, and provide a great deal more

flexibility to choose the underlying cryptographic functions than is

available in these schemes.

2 PRELIMINARIES
2.1 Notation
Let k ∈ N. The set of bitstrings of length k is denoted as {0, 1}k . The

concatenation of two bitstrings x and y is denoted by x ∥ y. The
exclusive-OR of two bitstrings x and y of same length is denoted

as x ⊕ y. We let bk denote the string with k successive repetitions

of bit b. If X is a set, we let x ←$X denote sampling a uniformly

random element x from X. The security parameter is denoted by

n ∈ N. Unless otherwise specified, we assume all symmetric keys

and hash outputs to be n bits in length.

2.2 Underlying Primitives and Functions
We use the following primitives in our protocols:

• HASH(X ): The cryptographic hash of input X .

• HMAC(K,X ): The HMAC of X under key K .

• PH(S, P): Hash of the password P using salt S .

• KDF(K,D, ℓ): ℓ-bit key derived from the secret value K and public

value D.

• ΠENC := (GEN, ENC, DEC): An encryption system where ENC(K,X )
is encryption of plaintext X under the key K , and DEC(K,Y ) is
decryption of ciphertext Y under the key K .

• ΠBSIG := (GEN, BLIND, UBLIND, SIGN, BVERIFY): A 2-move blind

signature scheme where

– M∗ ← BLIND(M): The user blinds the messageM to obtainM∗

and sends to the signer.

– σ ∗ ← SIGNSK (M
∗): The signer outputs a signatureσ ∗ on input

of messageM∗ and private key SK and sends to the user.

– F ← UBLIND(σ ∗): The user unblinds the signature σ ∗ to obtain
F . Note that the user inputs additional private state to the

UBLIND algorithm, which we leave implicit.

– BVERIFYPK (M, F ): Verification of signature F on message M
under public key PK as valid/invalid.

Next, we define two internal functions: VE(D,KP ) provides ver-

ifiable encryption of KP with D and DV(D,Z ) decrypts KP after

checking the correctness of D. Both functions assume that D, KP
and hash outputs are n bits long.

We remark that we use the special-purpose verifiable encryption

scheme define here, as opposed to using a generic authenticated

encryption scheme, for two reasons: First, our UC security proof re-

quires use of a random oracle call here to allow for programmability;



TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

Algorithm 1 Verifiably encrypt KP with D.

1: function VE(D,KP )

2: Z ← HASH(0 ∥ D) ∥ (HASH(1 ∥ D) ⊕ KP )

3: return(Z )

Algorithm 2 Verifiably decrypt Z with D.

1: function DV(D,Z )
2: X ← Z0...n−1
3: Y ← Zn ...2n−1
4: X ∗ = HASH(0 ∥ D)
5: if X == X ∗ then
6: return(HASH(1 ∥ D) ⊕ Y )
7: else
8: return(⊥)

second, what is required here is not quite authenticated encryption–

we only care about whether the key is correct, not about whether

the decrypted plaintext is correct, and we only encrypt once under
any key.

3 TICKET-MEDIATED PASSWORD
STRENGTHENING

3.1 The Setting and the Problem
It is common for a user to need to enter a password in order to

unlock some encrypted storage, such as encrypted flash memory, an

encrypted hard drive, or an individual encrypted file. Usually, this is

done by having the user enter a password, and then applying some

computationally expensive function such as PBKDF#2 or scrypt to

derive a cryptographic key from the password and a locally-stored

salt.

Unfortunately, an attacker who steals the user’s device can typi-

cally copy the salt and sufficient data to check a password guess

onto a large number of machines with a large number of proces-

sors, and run a password-guessing attack, in which each processor

generates plausible password guesses and checks them as quickly

as possible. Very few users can remember a password that will

withstand this kind of attack run over a few days. Thus, an attacker

who steals the user’s laptop may be able to unlock her hard drive,

or decrypt the signing keys used in her Bitcoin wallet, despite her

use of encryption.

Ticket-Mediated Password Strengthening (TMPS) is a scheme

for using a password to unlock a cryptographic key. It’s a natu-

ral replacement for password-based key derivation–e.g., feeding

a locally-stored salt and a user-entered password into scrypt to

derive an encryption key. The natural use case is using a password

to access encrypted storage. However, TMPS can be used anytime

a user enters a password to unlock a secret value, assuming the

device has internet access.

The goal of TMPS is to provide a better solution to the problem

of deriving or unlocking keys from passwords–one that massively

reduces the power of password-guessing attacks.

3.2 TMPS Overview
In Ticket-Mediated Password Strengthening (TMPS, for short), the

user
1
first interacts with a server to get a set of tickets. Each ticket

entitles the user to assistance from the server with one attempt to

unlock a master secret (called the payload key) using a password.
Later, users (or anyone else with access to the tickets) may use the

tickets to attempt to unlock the payload key using the password.

TMPS requires a setup phase, and two protocols: Reqest and

Unlock. During setup, the server establishes public encryption and

signing keys and makes them available to its users.

In order to get tickets, the user chooses a payload key and a pass-

word, and runs the Reqest protocol with the server, requesting

t tickets. If the protocol terminates successfully, the user ends up

with t tickets, each of which entitles her to one run of the Unlock

protocol.

In order to use a password to unlock the payload key, the user

must consume a ticket–she runs the Unlock protocol with the

server, passing the server some information from the ticket and

some information derived from her ticket and her password. When

the protocol runs successfully, the user recovers the payload key.

The security requirements of a TMPS scheme are:

(1) Reqest

(a) The server learns nothing about the password or payload

key from the Reqest protocol.

(b) There is no way to get a ticket the server will accept,

except by running the Reqest protocol.

(c) Each ticket is generated for a specific password and pay-

load key; tickets generated for one password and payload

key give no help in unlocking or learning any other pass-

word or payload key.

(2) Unlock

(a) AnUnlock runwill be successful (it will return the correct

KP ) if and only if:

(i) This ticket came from a successful run of the Reqest

protocol.

(ii) This ticket has never been used in another Unlock call.

(iii) The same password used to request the ticket is used to

Unlock it.

(b) From an unsuccessful run of the Unlock protocol, the

user gains no information about the payload key.

(c) From an unsuccessful run of the Unlock protocol, the

user learns (at most) that the password used to run the

protocol was incorrect.

(d) The server learns nothing about the payload key or pass-

word from the Unlock protocol.

(e) The server learns nothing aboutwhich user ran theUnlock

protocol with it at any given time.

Note that these requirements don’t describe the generation of

the payload key or the selection of the password. If the payload

key is known or easily guessed, then TMPS can do nothing to

improve the situation. In any real-world use, the payload key should

1
For convenience, we refer to “the user” generating random values and running

protocols in the rest of this paper when we really mean “software on the user’s device.”

The user herself should only need to remember the password, and perhaps provide

credentials to identify herself to the server when she requests new tickets.



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

be generated using a high-quality cryptographic random number

generator.

The strength of the password matters for the security of ticket-

mediated password strengthening, but in a very limited way–each

run of Unlock consumes one ticket and allows the user to check

one guess of the password. An attacker given N equally-likely pass-

words and t tickets thus has at most a t/N probability of successfully

learning the password.

3.3 Discussion
The usual way password-based key derivation fails is that an offline

attacker tries a huge number of candidate passwords, until he finally

happens upon the user’s password. He then derives the same key

as the user derived, and may decrypt her files. A TMPS scheme

avoids this attack by requiring the involvement of the server in each

password guess, and (more importantly) by limiting the number

of guesses that will ever be allowed. If the user of a TMPS scheme

requests only 100 tickets from the server, then an attacker who

compromises her machine and learns the tickets will never get

more than 100 guesses of her password. If he cannot guess the

password in his first 100 guesses, then he will never learn either

the password or the payload key. Even if he is given the correct

password after he has used up all the tickets, he cannot use that

password to learn anything about the payload key.

The security of a TMPS scheme relies on the server being unwill-

ing to allow anyone to reuse a ticket, and the inability of anyone to

unlock a payload key with a password without running the Unlock
protocol with a server, and consuming a fresh ticket in the process.

A corrupt server can weaken the security of TMPS, but only

in limited ways. It cannot learn anything about the password or

payload key. It cannot determine which user is associated with

which ticket, or link Reqest and Unlock runs. But it can enable

an attacker who has already compromised a user’s tickets to reuse

those tickets as many times as he likes.

4 THE BASIC PROTOCOL
In this section, we describe a set of protocols that implement Ticket-

Mediated Password Strengthening in a concrete way. Our proto-

cols require a secure cryptographic hash function, a public key

encryption scheme providing CCA2 security
2
, and a blind signature

scheme
3
. Our scheme has some similarities to an online anonymous

e-cash scheme–notably in the need to reject attempts to “double-

spend.” However, the application and many of the details are quite

different–each “coin” in our scheme is bound to a specific password

hashing computation.

A ticket gives a user enough information to enlist the server in

helping carry out one password-based key derivation. Each ticket

contains an inside part (which the user retains and does not share

with the server) and an outside part (which the user sends to the

server). The different parts of a ticket are bound together with

each other and with the specific password and key derivation being

carried out, and can’t be used for a different key derivation.

2
An attacker who can alter a ciphertext to get a new valid ciphertext for the same

plaintext can attack our scheme.

3
Variants which do not require a blind signature scheme appear in Section 6.

Wemake two assumptions about this protocol: First, all messages

in this protocol take place over an encrypted and authenticated

channel. Second, the user somehow demonstrates that he is en-

titled to be given tickets by the server; we assume the user has

already done this before the Reqest protocol is run. There are

many plausible ways this might be done, such as:

(1) The user may pay per ticket.

(2) The user may demonstrate his membership in some group

to whom the server provides this service.

(3) The server may simply provide this service for all comers.

The specific method used is outside our scope. However the user

demonstrates her authorization to receive tickets, it is very likely to

involve revealing her identity. In order to protect the user’s privacy

from the server, the Reqest protocol must thus prevent the server

linking tickets with this identifying information, or linking tickets

issued together.

4.1 Server Setup
The steps given below are done once by the server

4
.

• The server establishes an encryption keypair PKS , SKS for

some algorithm that supports CCA2 security. Server dis-

tributes its public key to all users.

• The server establishes a signature keypair PK ′S , SK
′
S for some

algorithm that supports blind signatures.

• The server establishes a list to store previously-seen tickets.

4.2 Reqest: Protocol for Requesting Tickets
The basic ticket requesting protocol is illustrated below. The user

starts out with a password P and a payload key KP , and generates

t tickets with the assistance of the server.

In order to create a ticket without revealing any identifying

information to the server, the user will do the following steps:

(1) Randomly generate an n-bit salt S and an n-bit secret value
B.

(2) Encrypt B using the public encryption key PKS of the server,

producing E.
(3) Run a protocol to get a blind signature on E from the server–

this is F .
(4) Derive a one-time key from the password and the secret B:

D ← HMAC(B, PH(S, P))
(5) Encrypt the payload key under the one-time key:

Z ← VE(D,KP )

The ticket will consist of (S, E, F ,Z ); the user must irretrievably

delete all the intermediate values above. The user repeats the steps

t times to get t tickets. Below, we show the Reqest protocol:

4
Rolling over to new keys periodically can be done, but requires some extra adminis-

trative steps to ensure that old tickets continue to be usable.



TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

Protocol: Reqest(P,KP , t):
User Server

for i = 1 . . . t

S ←$ {0, 1}n

B ←$ {0, 1}n

E ← ENC(PKS , B)

E∗ ← BLIND(E)

E∗

σ ∗ ← SIGNSK ′S
(E∗)

σ ∗

F ← UBLIND(σ ∗)

C ← PH(S , P )

D ← HMAC(B,C)

Z ← VE(D , KP )

Forget B,C , D , E∗, σ ∗

Ti ← (S , E , F , Z )

endfor

return(T1,2, . . .,t )

At the end of this protocol, the user constructs t tickets she can
use to run the Unlock protocol. The server, on the other hand,

knows only that it has issued t tickets–it knows nothing else about
them!

4.3 Unlock: Protocol for Unlocking a Ticket
In order to use a ticket along with a password P̂ to unlock KP , the

user does the following steps:

(1) Hash the password: Ĉ ← PH(S, P̂).
(2) Send (E, F , Ĉ) to the server.

(3) If the signature is invalid or E is being reused, then the server

returns ⊥.

(4) Otherwise:

(a) The server stores E, F as a used ticket.

(b) B ← DEC(SKS , E)
(c) D ← HMAC(B, Ĉ)
(d) The server sends back D.

(5) The user tries to decryptZ withD. If this succeeds, she learns
KP . Otherwise, she learns that P̂ was not the right password.

Note that in these two protocols, the server never learns anything

about KP , P, or P̂ , and has no way of linking a ticket between

Reqest and Unlock calls.

We also note that the Unlock protocol could be easily modified

to enable creation of new tickets when the submitted password to

Unlock is correct. This would ensure that a user who knows the

password always has at least one valid ticket, which would improve

usability of our scheme in real-world applications.

Protocol: Unlock(S, E, F ,Z , P̂):
User Server

Ĉ ← PH(S , P̂ )

E , F , Ĉ

IF
E fresh AND

VERIFYSK ′S
(E , F )

THEN

B ← DEC(SKS , E)

D ← HMAC(B, Ĉ)

ELSE
D ← ⊥

D

KP ← DV(D , Z )

return(KP )

5 SECURITY ANALYSIS
In this section, we provide a security analysis and some security

proofs for our basic protocol. Our approach comes in three separate

parts: First, we define an ideal functionality for the system. Second,

we prove that our basic protocol is indistinguishable from the ideal

functionality in the UC framework. Finally, we provide several

game-based security definitions, and prove bounds on an attacker’s

probability of winning the games when they are interacting with

the ideal functionality. These game-based definitions show that the

ideal functionality we’ve defined actually provides the practical

security we need from this scheme.

The ideal functionality makes use of a table τ–a key-value data-
base indexed by a ticket T . T can be any n-bit string, or the special
values ⊥ and *.

A user calls Reqest to get a new ticket
5
. We assume a two-sided

authenticated and secure channel for Reqest–the ideal function-

ality knows the user’s identity, and the user knows she is talking

with the ideal functionality. Also, Reqest requires an interaction

with the server, in which the server also learns the user’s identity.

At the end of the Reqest call, the user either has a valid ticket,

or knows she did not get a valid ticket. Note that in the case of

a corrupted server, we allow the server to “override” the honest

behavior of the ideal functionality by outputting a value R. If R = 1,

the ideal functionality proceeds as normal. If R = 0, it indicates

that the server does not wish to cooperate. In this case, the output

to the user is ⊥. Note that in the real world, we cannot prevent

the corrupt server from issuing an invalid ticket. However, in this

case, we require that the user can detect that the ticket is invalid.

The strongest guarantees we can hope for in the real world are

therefore captured by our ideal functionality.

5
The ideal functionality is defined for one ticket, but in our protocol, we define Reqest

to return t tickets at a time. This is equivalent to just rerunning the Reqest ideal

functionality t times.



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

Algorithm 3 Ideal Functionality: Initialize and Reqest

# Initialize the table that will store passwords,

# payload keys and aliases.
1: function Initialize(sid)

2: sid.τ ← {}

3: function Reqest(U , sid, P,KP )

# T corresponds to the “ideal” ticket.
4: T ←$ {0, 1}n

# Insert (P,KP ,⊥) into table τ with key T . The ⊥

# value indicates that the ticket T is fresh.
5: sid.τ [T ] ← (P,KP ,⊥)

6: Send to server sid: (sid, Reqest,U )
7: if server sid compromised then
8: Wait for response (sid, Reqest,U ,R).
9: else
10: R ← 1

11: if R = 1 then
12: Send to sourceU : (sid, Reqest,T )
13: else
14: Send to sourceU : (sid, Reqest,⊥)

The user makes use of a ticket and a password to recover her

payload key with an Unlock call. We assume the Unlock call is

made over a secure channel which is authenticated on one side–

the user knows she is talking with the ideal functionality, but the

ideal functionality doesn’t know who is talking to it. Unlock also

requires an interaction with the server, in which the server is not

told the identity of the user. At the end of the Unlock call, the user

either learns the payload key associated with the ticket she has

used, or receives an error message (⊥) and knows the Unlock call

has failed. Note that in the case of a corrupted server, we allow the

server to “override” the honest behavior of the ideal functionality

by outputting a value R. If R = 1, the ideal functionality responds

with the payload key, in the case that the password is correct, even
if the ticket is not fresh. If R = 0, it indicates that the server does

not wish to cooperate. In this case, the output to the user is ⊥.

Note that in the real world, we cannot prevent the corrupt server

from responding to unlock requests with tickets that are not fresh

(this corresponds to the corrupt ideal server flipping R from 0 to

1). Moreover, in the real world, we cannot prevent a corrupt server

from deviating from the protocol and computing the wrong payload

key (this corresponds to the corrupt ideal server flipping R from 1

to 0). However, in this case, we require that the user can detect that

the returned payload key is invalid. The strongest guarantees we

can hope for in the real world are therefore captured by our ideal

functionality.

Before stating our theorem, we note that we assume that the

protocols for Reqest and Unlock given in Sections 4.2 and 4.3 are

executed in a hybrid model, where an ideal functionality for secure,

two (resp. one)-sided authenticated channels, Fac (resp. Fosac), (see

e.g. [8]) is invoked each time a message is sent. We require that

the VE scheme used is the one given in Algorithms 1 and 2. We

assume three independent random oracles: Hpw,HKD,HVE. Hpw is

the password hash.HKD is used to model the HMAC key derivation

Algorithm 4 Ideal Functionality: Unlock

# If ticket and password good, return KP .

# Otherwise, return ⊥.
1: function Unlock(sid,T , P̂ )
2: if T ∈ sid.τ then
3: (P,KP ,α) ← sid.τ [T ]
4: elseα = ∗ signals invalid ticket.

5: (P,KP ,α) ← (⊥,⊥, ∗)
6: R ← 0

# α corresponds to the alias for ticket T .

# α = ⊥ indicates the ticket is fresh. α , ⊥ indicates

# ticket T was previously assigned an alias so not fresh.
7: if α = ⊥ then

# Fresh ticket
8: α ←$ {0, 1}n

9: R ← 1

10: else
# Reused or invalid ticket

11: R ← 0

# Server can see whether it’s getting invalid,

# repeated, or fresh ticket.
12: Send to server sid: (sid,Unlock,α)

# If server is NOT compromised, we know R.

# If server IS compromised, we must ask it

# how to respond.
13: if Server sid compromised then
14: Wait for (sid,Unlock,R) # R ∈ {0, 1}

# Send back the right response to the user.
15: if R = 0 then

# Server returns ⊥, no decryption possible.
16: Respond to caller: (sid,Unlock,⊥)

17: else if R = 1 then
# Server plays straight.

18: if P̂ = P then
19: Respond to caller: (sid,Unlock,KP )

20: else
# Server returns value, decryption fails.

21: Respond to caller: (sid,Unlock,⊥)

as a random oracle
6
and HVE is the random oracle for the verifiable

encryption scheme given in Algorithms 1, 2.

Theorem 5.1. Under the assumption that ΠENC is a CCA2-secure

encryption scheme (see Definition A.5), ΠBSIG is a 2-move blind

signature scheme (see Definition A.7) and the assumptions listed

6
We remark that Dodis et el. [12] showed that HMAC is not indifferentiable from a

random oracle. However, their attack only applies when one allows different sizes for

the HMAC key. Since we require B to always be a fixed length, this attack does not

apply to our setting–finding two values of B that give identical results from HMAC,

implies finding collisions for the underlying hash function.



TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

above, the protocols for Setup, Reqest and Unlock given in Sec-

tions 4.1, 4.2 and 4.3, UC-realize the ideal functionality provided in

Algorithms 3 and 4 under adaptive corruptions, with erasures.

We note that our protocols can be generalized to work with

multi-round blind signature schemes, and the same security proof

goes through.

The proof of this theorem appears in Appendix C.

6 VARIANTS OF THE BASIC PROTOCOL
In this section we discuss some variants and modifications of the

basic protocol which may be useful in specific situations.

6.1 Limiting Password Attempts
Ticket-mediated password strengthening permits a user to request

a large number of tickets at once, and this may make sense for rea-

sons of efficiency or convenience. However, if the user has chosen

a very weak password, it would be helpful to limit any attacker

who compromises the user’s machine to a very small number of

password guesses. For example, many systems have a limit of ten

password attempts before locking an account. There is a straight-

forward way to get this same limit with ticket-mediated password

strengthening, even when requesting hundreds or even thousands

of tickets at a time.

Suppose the user has successfully created 1000 password-hashing

tickets, T0,1,2, ...,999. Each successful use of a password ticket de-

rives the payload key, KP . In order to implement a limit of at most

ten password guesses, we do the following steps:

(1) Setup:

(a) KT ← KDF(KP , “ticket encryption”,n)
(b) Using any authenticated encryption with associated data

(AEAD) scheme, individually encrypt all but ten tickets

under the key KT
(2) Each time a ticket is successfully used to unlock KP
(a) KT ← KDF(KP , “ticket encryption”,n)
(b) Decrypt the next few encrypted tickets with key KT , until

we have ten tickets left unencrypted.

Consider an attacker who gets access to the stored data at some

point. He has only ten tickets available. Assuming the KDF is secure,

he cannot decrypt any other tickets without access to KP , which

he can get only by successfully using a ticket.

This technique can be used with our basic protocol or with any

of our variants, described below.

6.2 Adding Offline Access
It is possible to add a second offline mode of access to the payload

key. This may be a practical requirement in many cases, where a

user needs to have access even when internet access is not available.

However, this represents an explicit tradeoff between security and

usability–the number of tickets no longer provides a limit on how

many passwords may be guessed by an attacker who compromises

the user’s device.

If offline access is added, the first question is: how much com-

putation should be required to unlock the payload key offline?

We propose the following steps for adding offline access, if this is

necessary, making use of the “pepper” idea of Abadi et al. [26]:

(1) Determine the largest acceptable amount of computing time

on the device that would be acceptable to get offline access.

Let this parameter beW . For example, we might require ten

minutes’ continuous computing on the user’s device in order

to unlock the offline access. (Note that in many cases, the

constraint may be battery life rather than time.)

(2) Determine an acceptable time for the initial generation of

the offline access information, I , such that I × 2q =W for

some integer q. For example, I might be 15 seconds on the

user’s device.

(3) Calculate q ← lg(W /I ).
(4) Generate a random salt S∗ ←$ {0, 1}n for offline access.

(5) Compute D ← PH(S∗, P), using parameters for the password

hash that require I seconds to compute.

(6) Store Z ∗ ← VE(D,KP )

(7) Set the low q bits of S∗ to zeros.

(8) Forget D.

If this is done, we strongly suggest using amemory-hard function

for PH, with parameters set to the largest memory requirements that

can be reasonably accommodated on the user device–this will make

the offline attack more expensive and difficult, and may prevent the

attacker using commodity graphics cards to parallelize the attack.

Throwing away a few bits of the salt (following Abadi et al.) allows

us to only do the work necessary to compute one instance of PH
during setup, while still requiring an offline user (or attacker) to

compute 2
q
instances of PH.

6.2.1 Analysis. Consider a user who provides offline access requir-

ingW work, alongside a TPMS scheme for online access. If the

user’s device is compromised, the attacker is no longer limited to t
password guesses–instead, he first makes t password guesses “for

free,” and then doesW work per additional password guess.

Providing offline access throws away one of the major usability

advantages available with ticket-mediated password strengthening:

the ability of a user to choose a relatively low-entropy password

safely. A random dictionary word or six-digit number provides

substantial security against an attacker who has only ten guesses.

Further, most users can probably understand what kind of pass-

words are necessary to withstand an attacker who is limited to ten

guesses; few can properly estimate whether their password will

survive an offline attack given the attacker’s budget and the value

ofW .

The advantage of using a TMPS scheme in this situation is that it

allows the work per offline guess to be set to some extremely high

value, hopefully making the offline guessing attack too expensive

for an attacker in practice, while the user can still get access her

data with very little delay as long as she has internet access.

This technique can be used with our basic protocol, or with any

of the variants described below. (Though it would not make much

sense for the Offline Variant with HSM.)

6.3 An Offline Variant with HSM
Consider the situation where a user has a trusted computing envi-

ronment or trusted hardware security module (HSM). We define

an offline variant of ticket granting and unlocking protocol which

uses an HSM and does not need any external server. However, we

emphasize that this variant is secure only if the HSM is secure–an



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

attacker who can extract the secret from or reload past states into

the HSM can recover the KP with a simple password search.

6.3.1 Starting Assumptions. Weassume that theHSM can be loaded

up with a secret value, B, which can not be released from the HSM

afterward. We further assume that the HSM supports one-time use

of the value B which is updated at each interface as described in

Algorithm 5. Note that HSM_Step must be an atomic operation–if

any value of D is returned, then B must be updated.

Algorithm 5 Access Secret and Update HSM Internal State

1: function HSM_Step(C)
2: D ← HMAC(B,C)
3: B ← HASH(B)
4: return(D)

We also assume that the user can load a new value of B into the

HSM at any time which overwrites the previous existing value.

6.3.2 HSM Reqest Protocol. In order to generate t tickets, the
user first chooses a password, P and generates a random payload

key KP , and then follows the steps listed in Algorithm 6.

Algorithm 6 Create Tickets for the HSM Protocol

1: function HSM_Reqest(P,KP , t )
2: S ← {0, 1}n

3: B ← {0, 1}n

4: C ← PH(S, P)
5: Load B into the HSM as the new secret value.

6: for i ← 1 . . . t do
7: Di ← HMAC(B,C)
8: Zi ← VE(Di ,KP )

9: B ← HASH(B)

10: Forget D1,2, ...,t , C , B
11: return(S,Z1,2, ...,t )

The protocol uses a fixed random salt S for generating all t
tickets. As we do not need privacy from the HSM, reusing the salt

and getting same C is acceptable. Similarly, there is no need for

public key encryptions or signatures. Guessing the password is

equally difficult as the password-derived value C is never stored.

The value B is updated after each computation of Zi , resulting
t-different Di ’s. The t-tickets {Z1,Z2, . . . ,Zt } consist only of the

encryptions of KP under different keys Di . As a result, the user

storage as single S and Z1,2, ...,t .
Note that the same protocol can be used to generate new tickets

when the old ones are running out. In that case, the user simply

runs the HSM_Unlock algorithm (Algorithm 7) to recover KP , and

then runs the HSM_Reqest algorithm (Algorithm 6) with P and

KP to get more tickets for the same password and payload key.

6.3.3 HSM Unlock Protocol. The process of unlocking the tickets
is straightforward; however, it needs sequential runs of the protocol

starting from ticket number 1 to t and hence, requires a strong

synchronization between the HSM and the user. Specifically, the

synchronization ensures the computation of the correct value of B

and finally the KP when correct password is provided. The protocol

as shown in Algorithm 7 starts with accepting a password P̂ from

the user, which is used to derive a challenge value Ĉ . The HMAC of
this challenge value along with the current value of B inside the

HSM is computed by the HSM and returned to the user as D̂, and
then B is again updated by the HSM. These computations inside

the HSM follows the steps of Algorithm 5. Finally, the correctness

of D̂ is verified by analyzing the output K obtained at Step 4 of the

Algorithm 7. The correct value of D̂ implies K is the desired KP .

Algorithm 7 Use an HSM Ticket to Unlock KP

1: function HSM_Unlock(P̂, S,Z )
2: Ĉ ← PH(S, P̂)
3: D̂ ← HSM_Step(Ĉ)
4: K ← DV(D̂,Zi )
5: if K = ⊥ then
6: return(⊥)
7: else
8: return(K)

The user must delete all old values of Z , in order to ensure that

he can always determine which ticket is to be used next.

It is possible that some software error will lead to the HSM and

user software getting out-of-synch. The best strategy for handling

this is to attempt to unlock the payload key using the password

and the final ticket, and to keep trying until the payload key is

unlocked.

6.3.4 Analysis. Note that this scheme is not covered by our security

proofs. Here, we provide some arguments for the security of the

scheme.

Consider the situation where the user has produced t tickets,
and then her laptop was stolen by an attacker who cannot violate

the security of the HSM. Informally, what can we say about the

attacker’s chances of learning KP ?

The attacker needs to guess the correct value of C = PH(S, P).
Each guess of the password leads to a guess of C .

The user has tickets corresponding to the next t values of B that

will be used by the HSM. For i = 1, 2, . . . , t , a ticket Zi is used as

follows:

Di = HMAC(Bi ,C)

Zi = VE(Di ,KP )

Bi+1 = HASH(Bi )

The HSM will only carry out one computation with each value

of Bi–this can be used to derive the decryption key Di , but only if

the attacker guesses the right value ofC . Each value of Bi inside the
HSM allows a new guess ofC , and each value of Zi in the attacker’s

hands allows the guess to be checked.

After t guesses, the HSM has a value of B for which the attacker

has no corresponding values of Z . At this point, the attacker can
learn nothing about KP from interacting with the HSM. Since he

also cannot break the encryption, this imposes a hard limit–the

attacker gets only t guesses of the password.
In this setting, we have no privacy concerns with respect to

the HSM. However, it’s worth noting that the HSM never sees the



TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

password or any value it could use to check a password guess.

(Though if the HSM was also used to generate the salt S , this would
no longer be true.).

We assume that the HSM is able to securely keep B secret. Along

with whatever tamper-resistance features are incorporated into the

HSM, since B is updated each time it is used, side-channel attacks

are very unlikely to succeed.

6.4 Different Ways to Authorize Tickets
In the basic protocol, we assume that the server issues blind signa-

tures to allow the server to limit how much assistance it is required

to provide. (That is, the server’s owner presumably wants it to only

provide TMPS services to users who have paid for them, or to users

who are somehow affiliated with the entity running the server.). A

blind signature works well to protect the user’s privacy, but makes

strong demands on the signature scheme used. In particular, most

proposed post-quantum signature schemes have no known blind

signature defined. Below, we discuss alternative ways for the server

to limit access to its services without the need for a blind signature.

Our possible approaches fall into two broad categories:

(1) Offline–the Reqest operation is done without any interac-

tion with the server or any other party.

(2) Online–the Reqest protocol is almost unchanged, but some

other operation is substituted for the blind signature proto-

col.

Note that the security proof on our basic protocol doesn’t cover

these variants, though we believe it could be modified to cover

them without too much difficulty. For each variant, we provide

a short sketch of why we believe the variant is secure. Also note

that we still assume that the public key encryption used below is

CCA2–specifically, it must not be possible to modify a ciphertext

without changing the plaintext.

6.4.1 Third Party Signer (Online). A very lightweight (but imper-

fect) technique for ensuring user privacy from the server is simply

to separate the authorization of getting a ticket from the unlocking

of tickets. Suppose we have two trusted parties: the Bank and the

Server. The Bank authorizes tickets, and can recognize a ticket, but

is never shown tickets by the Server; the Server unlocks tickets

but can’t recognize them. In this protocol, we need an ordinary

signature, nothing more.

The Reqest protocol works as follows. Note that this is almost

the same protocol as with the blind signatures, except it is done

with the Banker instead of the Server.

Protocol: ThirdParty_Reqest(P,KP , t):
User Banker

for i = 1 . . . t

B ←$ {0, 1}n

E ← ENC(PKS , B)

E

F ← sign(SKB , E)

F

S ←$ {0, 1}n

C ← PH(S , P )

D ← HMAC(B,C)

Z ← VE(D , KP )

Forget B,C , D , E∗, σ ∗

Ti ← (S , E , F , Z )

endfor

return(T1,2, . . .,t )

The unlocking protocol is exactly the same except for the public

key used to verify the signature.

Security. This scheme is almost identical to the basic protocol–

the only difference is that the Reqest protocol is run with a dif-

ferent server, and no blind signature is used. The user’s privacy

from the server is ensured by separation of information–the banker

knows the signatures it issued to the user, but doesn’t share that

information with the server. An attacker who compromises the

user’s device has exactly the same probability of success in this

scheme as in the main protocol.

6.4.2 Group Signatures (Offline). If we want to use TMPS with a

signature scheme which doesn’t allow blind signatures, but allows

group or ring signatures, then a small variation of the protocol can

be done. We assume here that the user has a group public key PK
and a personal private key SKU for the group signature scheme.

We also assume that the server knows PK .

Algorithm 8 Use Group Signature to Create Tickets

1: function Group_Reqest(P,KP , t )
2: for i ← 1 . . . t do
3: B←$ {0, 1}n

4: E ← ENC(PKS ,B)
5: F ← GroupSign(SKU , E)
6: S ←$ {0, 1}n

7: C ← PH(S, P)
8: D ← HMAC(B,C)
9: Z ← VE(Di ,KP )

10: Forget D1,2, ...,N , C , B
11: Ti ← (S, E, F ,Z )

12: return(T1,2, ...,t )



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

The corresponding Unlock protocol is almost unchanged–the

server simply verifies that F signs E using the group public key PK
rather than its own signature public key PK ′S .

Security. Consider an attacker who compromises the user’s de-

vice, and thus learns his tickets and his signing key. The attacks

possible to him are the same as in the basic protocol–he can request

new tickets, but without knowing KP or P , these will give him no

help in learning the correct value of P or KP . Despite knowing the

signing key, he cannot alter tickets to give himself more guesses,

because the public key encryption used is CCA2.

The server can’t learn which user is Unlocking her key at any

given time, because the group signature tells the server only that

she is a member of the group.

6.4.3 Proof ofWork (Offline). If the server’s main concern is having

its resources wasted rather than being paid for its services, a simple

alternative is to require a proof of work for each new ticket. Let’s

add two new functions:

y ← MakePOW(x, W) does approximatelyW work to create a proof

of work, y, associated with input value x .
CheckPOW(x, y, W) returns 1 if the proof of work is valid, and 0

otherwise.

With these two, we can define an entirely offline proof-of-work

version of our protocol, whereW is assumed to be a known sys-

temwide parameter.

Algorithm 9 Use Proof of Work to Create Tickets

1: function POW_Reqest(P,KP , t )
2: for i ← 1 . . . t do
3: B←$ {0, 1}n

4: E ← ENC(PKS ,B)
5: F ← MakePOW(E,W )
6: S ←$ {0, 1}n

7: C ← PH(S, P)
8: D ← HMAC(B,C)
9: Z ← VE(Di ,KP )

10: Forget D1,2, ...,N , C , B
11: Ti ← (S, E, F ,Z )

12: return(T1,2, ...,t )

Protocol: POW_Unlock(S, E, F ,Z , P̂):
User Server

Ĉ ← PH(S , P̂ )

E , F , Ĉ

IF
E fresh AND

CheckPOW(F , E ,W )

THEN

B ← DEC(SKS , E)

D ← HMAC(B, Ĉ)

ELSE
D ← ⊥

D

KP ← DV(D , Z )

return(KP )

Security. The use of the proof of work eliminates any information

about the user in the ticket, and in fact, makes the Reqest protocol

non-interactive.

An attacker who compromises the user’s device can make up

additional tickets, but without knowing KP or P , these do not help

him learn the correct values of P or KP . Again, the attacker cannot

alter the value of E, because the public key encryption is CCA2

secure.

7 PERFORMANCE AND IMPLEMENTATION
The TMPS protocol requires several primitives:

(1) Password hashing (e.g., PBKDF#2 or Argon2)

(2) Public key encryption (e.g. RSA or El Gamal)

(3) Blind signatures (e.g. RSA or ElGamal)

(4) Hash functions and HMAC (e.g., using SHA256 or Blake2)

The protocol permits a great deal of flexibility in choice of un-

derlying cryptographic primitives. Notably, there are proposed

post-quantum algorithms that meet these requirements.

7.1 Prototype Implementation
We implemented our protocol in Python

7
, using the Cryptography

module, which provides a Python frontend for OpenSSL calls. The

protocol allows a choice of underlying primitives; we used RSAwith

3072-bit moduli for (blind) signatures and public key encryption,

along with SHA256 for hashing, and PBKDF2_HMAC_SHA2 for

password-hashing.

All measurements were performed on a Macbook Pro (3.5 GHz

Intel Core i7). While this is not an optimized implementation, it

allows us to obtain concrete performance numbers, and it demon-

strates the practicality of the scheme.

7
We will make source code available on a public-facing git repository



TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

7.2 Requesting a Ticket
On the user device, each ticket Reqest requires the following

operations:

• One password hash computation.

• Generating 2n random bits.

• One public key encryption.

• Blinding and unblinding one signature request.

• One HMAC computation.

• Two hash operations.

With RSA, this is comparable to the work needed to set up a

TLS connection. Thus, devices that can set up a TLS connection

can Reqest tickets. The slowest part of this process on the user

device is likely to be the password hash computation, which can be

controlled by choosing its hardness parameters.

In our implementation, each Reqest required about 0.008 sec-

onds on the user side.

On the server, each Reqest requires only a blind signature. With

RSA, this is approximately the same cost as a normal RSA signa-

ture
8
.

In our implementation, each Reqest required about 0.076 sec-

onds on the server side.

7.3 Unlocking a Ticket
On the user device, each Unlock requires the following opera-

tions:

• One password hash computation.

• One HMAC computation.

• Two hash operations.

Again, the password hash is almost certain to be the slowest part

of this process.

In our implementation, each Unlock required about 0.0049 sec-

onds on the user side.

On the server, an Unlock call requires a few operations:

• Looking up a value in a list of previously-used tickets.

• A signature verification

• A public key decryption

• An HMAC computation

The cryptography used here is comparable to setting up a TLS

connection, and so should be no problem for any server.

In our implementation, each Unlock required about 0.002 sec-

onds on the server side.

7.4 Storage
Keeping track of the previously-used tickets requires some storage,

but not a huge amount. We can hash the value of E from the ticket

(the public-key encrypted value) into 128-bits
9
(16 bytes), e.g., by

truncating SHA256 outputs at 128 bits.

A user who makes ten Unlock calls per day will go through

fewer than 4096 tickets in one year. The server needs 64 KiB to

store one 16-bit hash for each of those tickets. If the server supports

8
The extra work for getting a blind RSA signature is done by the person requesting

the blind signature–they must blind the signature request, and unblind the value they

get back from the signer.

9
We can use a relatively short hash because we don’t care about collisions–an attacker

who forces two tickets to collide simply deprives himself of the use of one of his tickets.

1000 users, it will need about 64 MiB for a year’s worth of tickets–a

hash table with these values in it will fit into RAM.

Using 3072-bit RSA, each ticket requires less than 1 KiB on the

user device. Thus, even low-end devices like tablets and smart-

phones can easily store a year’s supply of tickets.

8 CONCLUSION AND OPEN QUESTIONS
In this paper, we have proposed a newmechanism for strengthening

password-based key derivations, called TMPS (Ticket-Mediated

Password Strengthening). We have also proposed a set of protocols

that implements a TMPS scheme, proven its security in the UC

model, and provided a number of variant schemes which allow for

different implementation constraints and tradeoffs.

There are several questions left open by this research.

• Is it possible to construct TMPS schemes which provide privacy
for the user, allow the server to restrict access to only authorized
users, and do not need blind or group signatures. The variant
protocols in Section 6 that avoided these primitives imposed

other requirements–either a willingness to trust a third party

with user privacy, or a willingness to provide the service to

all comers. Are there better options?

• Are there other settings where one can use tickets bound to
a computation to obtain a novel functionality? For example,

could we use this kind of mechanism to limit accesses to a

local encrypted database, or computations of a key derivation

function.

• Are there are more elaborate restrictions that can be imposed on
these tickets, without losing the users’ privacy? For example,

is it possible to rate-limit Unlock requests from a given user

without revealing which user was using the scheme?

• Finally, a number of additional features would be useful in

implementing this scheme on a large scale. For example,

support for key rollover on the server would be useful, as

would a specific solution for backed-up data (where most or

all of the stored tickets in the backup may have already been

used).

ACKNOWLEDGMENTS
The authors would like to thank Bart Preneel, Frank Piessens, Vin-

cent Rijmen, Kristen Greene, Ray Perlner, Lily Chen, and the partic-

ipants of the May 2019 DC Area Crypto Day workshop for many

useful comments and suggestions.

REFERENCES
[1] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.

2018. PASTA: PASsword-based Threshold Authentication. In ACM Conference on
Computer and Communications Security. ACM, 2042–2059.

[2] Devdatta Akhawe. 2016. How Dropbox securely stores

your passwords. https://blogs.dropbox.com/tech/2016/09/

how-dropbox-securely-stores-your-passwords/. Online; accessed 4 Jan-

uary 2019.

[3] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. 2013. DupLESS: Server-

Aided Encryption for Deduplicated Storage. IACR Cryptology ePrint Archive 2013
(2013), 429. http://eprint.iacr.org/2013/429

[4] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. 2003. Foundations of

Group Signatures: Formal Definitions, Simplified Requirements, and a Construc-

tion Based on General Assumptions. In EUROCRYPT 2003 (LNCS), Eli Biham (Ed.),

Vol. 2656. Springer, Heidelberg, 614–629. https://doi.org/10.1007/3-540-39200-9_

38

https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
http://eprint.iacr.org/2013/429
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-39200-9_38


IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

[5] Mihir Bellare, David Pointcheval, and Phillip Rogaway. 2000. Authenticated

Key Exchange Secure Against Dictionary Attacks. In Proceedings of the 19th
International Conference on Theory and Application of Cryptographic Techniques
(EUROCRYPT’00). Springer-Verlag, Berlin, Heidelberg, 139–155. http://dl.acm.

org/citation.cfm?id=1756169.1756185

[6] Steven M. Bellovin and Michael Merritt. 1992. Encrypted Key Exchange:

Password-Based Protocols Secure Against Dictionary Attacks. In IEEE SYM-
POSIUM ON RESEARCH IN SECURITY AND PRIVACY. 72–84.

[7] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and

Gregory Neven. 2018. The Wonderful World of Global Random Oracles. In

EUROCRYPT 2018, Part I (LNCS), Jesper Buus Nielsen and Vincent Rijmen

(Eds.), Vol. 10820. Springer, Heidelberg, 280–312. https://doi.org/10.1007/

978-3-319-78381-9_11

[8] Jan Camenisch, Robert R. Enderlein, and Gregory Neven. 2015. Two-Server

Password-Authenticated Secret Sharing UC-Secure Against Transient Corrup-

tions. Cryptology ePrint Archive, Report 2015/006. http://eprint.iacr.org/2015/

006.

[9] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-

cols. Journal of Cryptology 13, 1 (Jan. 2000), 143–202. https://doi.org/10.1007/

s001459910006

[10] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal Malkin.

2001. On Adaptive vs. Non-adaptive Security of Multiparty Protocols. In EU-
ROCRYPT 2001 (LNCS), Birgit Pfitzmann (Ed.), Vol. 2045. Springer, Heidelberg,

262–279. https://doi.org/10.1007/3-540-44987-6_17

[11] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. 1996. Adaptively

Secure Multi-Party Computation. In 28th ACM STOC. ACM Press, 639–648. https:

//doi.org/10.1145/237814.238015

[12] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tes-

saro. 2012. To Hash or Not to Hash Again? (In)Differentiability Results for

H 2
and HMAC. In CRYPTO 2012 (LNCS), Reihaneh Safavi-Naini and Ran

Canetti (Eds.), Vol. 7417. Springer, Heidelberg, 348–366. https://doi.org/10.1007/

978-3-642-32009-5_21

[13] Adam Everspaugh, Rahul Chaterjee, Samuel Scott, Ari Juels, and Thomas

Ristenpart. 2015. The Pythia PRF Service. In 24th USENIX Security Sym-
posium (USENIX Security 15). USENIX Association, Washington, D.C., 547–

562. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/everspaugh

[14] Warwick Ford and Burton S. Kaliski Jr. 2000. Server-Assisted Generation of a

Strong Secret from a Password. In 9th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2000), 4-16
June 2000, Gaithersburg, MD, USA. IEEE Computer Society, 176–180. http:

//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7094

[15] Susan Hohenberger, Allison Lewko, and BrentWaters. 2012. Detecting Dangerous

Queries: A New Approach for Chosen Ciphertext Security. Cryptology ePrint

Archive, Report 2012/006. http://eprint.iacr.org/2012/006.

[16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. 2017.

TOPPSS: Cost-Minimal Password-Protected Secret Sharing Based on Thresh-

old OPRF. In ACNS 17 (LNCS), Dieter Gollmann, Atsuko Miyaji, and Hiroaki

Kikuchi (Eds.), Vol. 10355. Springer, Heidelberg, 39–58. https://doi.org/10.1007/

978-3-319-61204-1_3

[17] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. 2018. OPAQUE: An Asymmetric

PAKE Protocol Secure Against Pre-computation Attacks. In EUROCRYPT (3)
(Lecture Notes in Computer Science), Vol. 10822. Springer, 456–486.

[18] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography,
Second Edition. CRC Press.

[19] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. 1998. Secure Appli-

cations of Low-Entropy Keys. In ISW’97 (LNCS), Eiji Okamoto, George I. Davida,

and Masahiro Mambo (Eds.), Vol. 1396. Springer, Heidelberg, 121–134.

[20] Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Mannan,

and N. Asokan. 2018. SafeKeeper: Protecting Web Passwords using Trusted

Execution Environments. In Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine
Champin, Fabien L. Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.).

ACM, 349–358. https://doi.org/10.1145/3178876

[21] Klaudia Krawiecka, Andrew Paverd, and N. Asokan. 2016. Protecting Password

Databases using Trusted Hardware. In Proceedings of the 1st Workshop on System
Software for Trusted Execution, SysTEX@Middleware 2016, Trento, Italy, December
12, 2016. ACM, 9:1–9:6. https://doi.org/10.1145/3007788

[22] Russell W. F. Lai, Christoph Egger, Manuel Reinert, Sherman S. M. Chow, Matteo

Maffei, and Dominique Schröder. 2018. Simple Password-Hardened Encryption

Services. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 1405–1421. https://www.usenix.org/conference/

usenixsecurity18/presentation/lai

[23] Russell W. F. Lai, Christoph Egger, Dominique Schröder, and Sherman S. M.

Chow. 2017. Phoenix: Rebirth of a Cryptographic Password-Hardening Service.

In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,

Vancouver, BC, 899–916. https://www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/lai

[24] Andrew Y. Lindell. 2009. Adaptively Secure Two-Party Computation with Era-

sures. In CT-RSA 2009 (LNCS), Marc Fischlin (Ed.), Vol. 5473. Springer, Heidelberg,

117–132. https://doi.org/10.1007/978-3-642-00862-7_8

[25] Arvind Mani. 2015. Life of a Password. Real World Crypto 2015. https://rwc.iacr.

org/2015/Slides/RWC-2015-Amani.pdf.

[26] T. Mark A. Lomas Martin Abadi and Roger Needham. 1997. Strengthening pass-

words. Technical report. https://users.soe.ucsc.edu/~abadi/Papers/pwd-revised/

pwd-revised.html.

[27] Alec Muffett. 2014. Facebook: Password Hashing & Authentication. Presenta-

tion at Passwords 2014 Conference, NTNU. https://video.adm.ntnu.no/pres/

54b660049af94.

[28] Alec Muffett. 2015. Life of a Password. Presentation at Real World Crypto 2015.

[29] Jonas Schneider, Nils Fleischhacker, Dominique Schröder, and Michael Backes.

2016. Efficient Cryptographic Password Hardening Services from Partially Obliv-

ious Commitments. In Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi (Eds.). ACM, 1192–1203. http://dl.acm.org/citation.cfm?id=2976749

[30] Dominique Schröder and Dominique Unruh. 2012. Security of Blind Signatures

Revisited. In PKC 2012 (LNCS), Marc Fischlin, Johannes Buchmann, and Mark

Manulis (Eds.), Vol. 7293. Springer, Heidelberg, 662–679. https://doi.org/10.1007/

978-3-642-30057-8_39

[31] Meltem Sönmez Turan, Elaine B. Barker, William E. Burr, and Lidong Chen. 2010.

SP 800-132. Recommendation for Password-Based Key Derivation: Part 1: Storage
Applications. Technical Report. National Institute of Standards & Technology,

Gaithersburg, MD, United States.

[32] Thomas Wu. 2000. The SRP Authentication and Key Exchange System. RFC 2945

(2000), 1–8. https://doi.org/10.17487/RFC2945

A DEFINITIONS
In this section, we mention the key definitions used in the security

analysis of our protocol to facilitate better understanding. Our

exposition closely follows [4, 15, 18, 30].

DefinitionA.1. [Encryption System]An encryption system can

be defined as a tuple of probabilistic polynomial-time algorithms

ΠENC(GEN, ENC, DEC) such that:

(1) The key-generation algorithm GEN takes as input the security
parameter 1

n
and outputs a key K .

(2) The encryption algorithm ENC takes as input a key K and a

plaintext message M ∈ {0, 1}∗, and outputs a ciphertext C
where C ← ENCK (M).

(3) The decryption algorithm DEC takes as input a key and a

ciphertext, and outputs a message. We assume without loss

of generality that the decryption algorithm corresponding

ENCK is DECK such thatM = DECK (C) and for every n, every
key K output by GEN(1n ), and every M ∈ {0, 1}∗, it holds
that DECK (ENCK (M)) = M .

The Chosen-Ciphertext Attack (CCA) security experiment
PrivKcca

A,ΠENC
(n): Consider the following experiment for an encryp-

tion system ΠENC = (GEN, ENC, DEC), adversary A, and value n for

the security parameter.

(1) A random key K is generated by running GEN(1n ).
(2) The adversary A is given input 1

n
and oracle access to

ENCK (·) and DECK (·). It outputs a pair of messages M0, M1

of the same length.

(3) A random bit b ← {0, 1} is chosen, and then a ciphertext

C ← ENCK (Mb ) is computed and given to A. We call C the

challenge ciphertext.

(4) The adversary A continues to have oracle access to ENCK (·)
and DECK (·), but is not allowed to query the latter on the

challenge ciphertext itself. Eventually, A outputs a bit b ′

http://dl.acm.org/citation.cfm?id=1756169.1756185
http://dl.acm.org/citation.cfm?id=1756169.1756185
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
http://eprint.iacr.org/2015/006
http://eprint.iacr.org/2015/006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://doi.org/10.1007/978-3-642-32009-5_21
https://doi.org/10.1007/978-3-642-32009-5_21
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7094
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7094
http://eprint.iacr.org/2012/006
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1145/3178876
https://doi.org/10.1145/3007788
https://www.usenix.org/conference/usenixsecurity18/presentation/lai
https://www.usenix.org/conference/usenixsecurity18/presentation/lai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://doi.org/10.1007/978-3-642-00862-7_8
https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://users.soe.ucsc.edu/~abadi/Papers/pwd-revised/pwd-revised.html
https://users.soe.ucsc.edu/~abadi/Papers/pwd-revised/pwd-revised.html
https://video.adm.ntnu.no/pres/54b660049af94
https://video.adm.ntnu.no/pres/54b660049af94
http://dl.acm.org/citation.cfm?id=2976749
https://doi.org/10.1007/978-3-642-30057-8_39
https://doi.org/10.1007/978-3-642-30057-8_39
https://doi.org/10.17487/RFC2945


TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

(5) The output of the experiment is defined to be 1 if b ′ = b, and
0 otherwise.

Definition A.2. [CCA Security] An encryption system ΠENC has

indistinguishable encryptions under a chosen-ciphertext attack (or

is CCA-secure) if for all probabilistic polynomial-time adversaries

A there exists a negligible function negl such that:

Pr [PrivKcca
A,ΠENC

(n) = 1] ≤
1

2

+ neдl(n),

where the probability is taken over all random coins used in the

experiment.

Other variants of the CCA Security definition are defined below.

Definition A.3. [Chosen Plaintext Attack (CPA) Security]
Similar to the security experiment of CCA except that the Ad-

versary A is not given access to decryption oracle at step 2 and

step 4.

Definition A.4. [Non-adaptive CCA or CCA1 Security] Simi-

lar to the security experiment of CCA except that the Adversary

A is not given access to decryption oracle at step 4.

Definition A.5. [Adaptive CCA or CCA2 Security] Similar to

the security experiment of CCA where the AdversaryA is allowed

to perform a polynomially bounded number of encryptions, decryp-

tions or other calculations over inputs of its choice except on the

challenge ciphertext.

Definition A.6. [Signature Scheme]:A signature scheme is a tu-

ple of probabilistic polynomial-time algorithmsΠSIG (GEN, SIGN, VERIFY)
such that:

(1) The key-generation algorithm GEN takes as input a security

parameter 1
n
and outputs a pair of keys (PK, SK). These are

called the public key and the private key, respectively.

(2) The signing algorithm SIGN takes as input a private key SK
and a message M from some underlying message space. It

outputs a signature F represented as F ← SIGNSK (M).
(3) The deterministic verification algorithm VERIFY takes as

input a public key PK , a message M , and a signature F . It
outputs a bit b represented as b = VERIFYPK (M, F ) where
b = 1 means valid and b = 0 means invalid.

We require that for every n, every (PK, SK) output by GEN(1n ), and
every messageM in the appropriate underlying plaintext space, it

holds that

VERIFYPK (M, SIGNSK (M)) = 1.

We say F is a valid signature on a messageM if VERIFYPK (M, F ) =
1.

Definition A.7. [Blind Signature] A 2-move blind signature

scheme is an interactive signature scheme with signer S and user

U and can be defined as a tuple of probabilistic polynomial-time al-

gorithms ΠBSIG = (GEN, BLIND, UBLIND, SIGN, BVERIFY) such that:

(1) The key-generation algorithm Gen takes as input a security

parameter 1
n
and outputs a pair of keys (PK, SK). These are

called the public key and the private key, respectively.

(2) Signature Issuing. The parties execute the following protocol,

denoted ⟨U(PK,M),S(SK)⟩:
(a) M∗ ← BLIND(M): The user blinds themessageM to obtain

M∗ and sends to the signer.

(b) F ∗ ← SIGNSK (M
∗): The signer outputs a signature F ∗ on

input of messageM∗ and private key SK and sends to the

user.

(c) F ← UBLIND(F ∗): The user unblinds the signature F ∗ to
obtain F . Note that the user inputs additional private state
to the UBLIND algorithm, which we leave implicit.

(3) The deterministic verification algorithm BVERIFY takes as

input a public key PK , a message M , and a signature F . It
outputs a bit b where b = 1 means valid and b = 0 means

invalid.

We require that for every n, every (PK, SK) output by GEN(1n ), and
every message M ∈ {0, 1}n and any F output by U in the joint

execution of ⟨U(PK,M),S(SK)⟩, it holds that

BVERIFYPK (M, F ) = 1.

The security of blind signature schemes requires two properties,

namely unforgeability and blindness.

DefinitionA.8. [Unforgeability]A2-move blind signature scheme

ΠBSIG = (GEN, BLIND, UBLIND, SIGN, BVERIFY) is called unforge-

able if for any efficient algorithm A the probability that experi-

ment Unforge
ΠBSIG
A

(n) evaluates to 1 is negligible (as a function of

n) where

Experiment ForgeAΠBSIG

(1) (SK, PK) ← GEN(1n )

(2) ((M1, F1), · · · , (Mk+1, Fk+1))← A
⟨·,S(SK )⟩∞ (PK) Return 1

iff

(a) Mi , Mj for 1 ≤ i < j ≤ k + 1 and
(b) BVERIFYPK (Mi , Fi ) = 1 for all i = 1, 2, · · · ,k + 1, and
(c) at most k interactions with ⟨·,S(SK)⟩∞ were completed.

Definition A.9. [Blindness] A 2-move blind signature scheme

ΠBSIG = (GEN, BLIND, UBLIND, SIGN, BVERIFY) is called blind if for

any efficient algorithmA the probability that experimentBlindΠBSIG
BSIGN∗

(n)

evaluates to 1 is negligibly close to
1

2
where

Experiment BlindΠBSIG
BSIGN∗

(1) (PK,M0,M1, st f ind ) ← A(f ind, 1
n )

(2) b ← {0, 1}

(3) st issue ← A
⟨U(PK ,Mb ), ·⟩

1, ⟨U(PK ,M
1−b ), ·⟩

1

(issue, st f ind ) and
let Fb , F1−b denote the (possibly undefined) local outputs of

U(PK,Mb ) resp.U(PK,M1−b )

(4) set (F0, F1) = (⊥,⊥) if F0 = ⊥ or F1 = ⊥
(5) b∗ = A(дuess, F0, F1, stissue )
(6) return 1 iff b = b∗.

Definition A.10. [Group Signature] A group signature scheme

ΠGSIG = (GKд, GSIGN, GVERIFY, OPEN) consists of four polynomial-

time algorithms:

(1) The randomized group key generation algorithm GKд takes

input a security parameter 1
n
and 1

m
wherem ∈ N is the

group size and outputs a tuple (дPK,дmSK,дSK), where
дPK is the group public key, дmSK is the group manager’s

secret key, and дSK is an n-vector of keys with дSK[i] being
a secret signing key for player i ∈ [m].



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

(2) The randomized group signing algorithm GSIGN takes as

input a secret signing key дSK[i] and a messageM to return

a signature ofM under дSK[i] i ∈ [m].
(3) The deterministic group signature verification algorithm

GVERIFY takes as input the group public key дPK , a message

M , and a candidate signature F forM to return either 1 or 0.

(4) The deterministic opening algorithm OPEN takes as input

the group manager secret key дmSK , a message M , and a

signature F ofM to return an identity i or the symbol ⊥ to

indicate failure.

Correctness: The scheme must satisfy the following correctness re-

quirement. For all n,m ∈ N, all (дPK,дmSK,дSK) ∈ [GKд(1
n, 1m )],

all i ∈ [n] and allM ∈ {0, 1}∗

GVERIFY(дPK,M, GSIGN(дSK[i],M)) = 1 and

OPEN(дmSK,M, GSIGN(дSK[i],M)) = i

Definitions of security in the Universal Composability (UC) frame-
work. We refer to previous work [9, 10, 24] for definitions of UC

secure computation in the adaptive-corruption setting.

B GAME-BASED SECURITY DEFINITIONS
AND PROOFS

Theorem 5.1 ensures that the basic protocol behaves like the ideal

functionality, but does not tell us exactly what security properties

the ideal functionality provides. In this section, we consider some

game-based security definitions, and show that the ideal function-

ality makes it easy to prove a bound on an attacker’s probability of

winning these games. Combined with Theorem 5.1, we thus prove

that no attacker interacting with our basic protocol can win these

games with probability more than negligibly higher than these

bounds.

B.1 User Compromise: Stealing Tickets
The most practically important attack to consider involves the

compromise of a user’s data. For example, Bob steals Alice’s laptop

with an encrypted hard drive; he knows all her tickets, and can

impersonate her to the server, but he doesn’t knowAlice’s password.

The security goal of our scheme in this case is straightforward: after

Bob steals Alice’s t tickets, he gets only t guesses for her password.
We can define this in terms of the following game:

Security Game: User Compromise
(1) The game is parametrized by security parameter n, dic-

tionary size N and number of tickets t , where t < N .

(2) The challenger generates a list of N distinct passwords,

P1, ...,N .

(3) The challenger randomly generates a payload key,

KP ← {0, 1}
n
.

(4) The challenger chooses a random ℓ ∈ {1, . . . ,N }.
(5) The challenger honestly runs ServerSetup and

RequestTickets the to generate t tickets T1, ...,t us-

ing password Pℓ and payload key KP .

(6) The challenger provides the attacker with the list of N
passwords and t tickets.

(7) The attacker may send any messages he likes to the

server, and may do any computation he likes, up to

some very generous limits.

(8) The attacker may request new tickets by running

RequestTickets with the challenger.

(9) The attacker must return a guess of KP . If his guess is

correct, he wins; otherwise he loses.

In this game, we explicitly assume that the server being used is

not compromised.

Consider an attacker allowed to make at most 2
k
queries to the

server, and at most 2
k
trial decryption attempts to DV. The protocol

meets its security target against this attacker if he wins the game

with probability at most
t
N + negl(n − k ).

B.1.1 Practical Relevance. This game directly relates to the attack

we are most concerned with in this system–the one where Bob

learns all of Alice’s stored information, and tries to guess her pass-

word so he can decrypt all her files. If Alice keeps only t tickets on
her computer, this must translate to Bob getting no more than t
guesses at her password, in order for our system to be secure.

B.1.2 Proof. We nowwill prove that an adversary interacting with

the ideal functionality and limited to at most 2
k
trial decryptions

with DV has at most a
t
N +negl(n )n − k probability of winning this

game.

Definition B.1. Winning Transcript
An attacker has a winning transcript (WT) when the transcript of

his interactions with the ideal functionality includes at least one

response to an Unlock request which contains the correct value

of KP .

A losing transcript (LT) is any transcript which is not a winning

transcript.

Fact. Given a winning transcript, the attacker has a probability of

one of winning the game.

We write Pr [WT ] to denote the probability of getting a winning

transcript, and Pr [WT |A] to denote the probability of adversary A
getting a winning transcript.

Fact. An Unlock with an incorrect password reveals no infor-

mation about the correct password other than the fact that the

attempted password was incorrect.

This follows trivially from the ideal functionality–the only thing

returned in step 21 of the ideal functionality is ⊥, which reveals no

information about the correct password.

Definition B.2. Well-Behaved Adversary
Consider an adversary given ticketsT1,2, ...,t and passwords P1,2, ...,N .

A well-behaved adversary (WBA) makes queries to the ideal func-

tionality according to the following rules:

(1) Never make a Reqest query.

(2) For each Unlock query:

(a) Use a ticket T ∈ T1, ...,t .
(b) Never use the same ticket in more than one Unlock query.

(c) Use a password P̂ ∈ P1, ...,N .



TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

(d) Never use the same password in more than one Unlock

query.

Lemma B.1. AWBA has a probability of at most
t
N of having a

winning transcript.

Proof:
(1) Every WBA Unlock query has a valid ticket. (Definition of

WBA (a,b) and Definition of Game (step 5))

(2) Every WBA Unlock query returns (1,⊥) if its password is

incorrect, and (1,KP ) if its password is correct. (Ideal func-

tionality, lines 26 and 29)

(3) WBA makes at most t queries. (WBA definition, (a,b))

(4) P[GT ] = P[ correct password appears in one of WBA’s

Unlock queries]. (Implication of step 2.)

(5) P[correct password appears in one of WBA’s queries] ≤ t
N

(a) WBA makes t queries, each with a different password.

(b) WBA has no better way to choose password guesses than

choosing randomly from the list of unused passwords.

(Definition of game, Fact B.1.2.).

(c) Thus, WBA has at best a
t
N chance of including the right

password in one of its queries.

(6) Thus, a WBA has at most a
t
N probability of having a win-

ning transcript. (Previous two steps.)

Lemma B.2. There is no adversary A such that Pr [WT |A] >

Pr [WT |WBA] + 2k−n .

Proof: By showing that violating any of the five conditions of being
a WBA can never raise P[WT ] by more than a negligible amount.

(1) Making a Reqest call never raises P[WT ].
(a) A WT is a transcript in which an Unlock returns KP .

(b) Tickets generated by a Reqest permit an Unlock with

the same payload key as appeared in the Reqest.

(c) The value of KP is selected randomly from all possible

n-bit strings.

(d) The adversary may make at most 2
k
Reqest calls.

(e) Thus, the probability of the adversary putting the right

value of KP in one of those Reqest calls (which will

enable an Unlock call with the right value of KP ) is no

greater than 2
k−n

.

(2) Using a ticket that’s not in the valid set of tickets never raises

P[WT ]. (Only tickets T1,2, ...,t have payload key KP .

(3) Reusing a ticket never raises P[WT ]. (A reused ticket always

gets (⊥,⊥).

(4) Using a password that’s not in P1, ...,N never raises P[WT ].
(Only an Unlock with Pℓ will get back (1,KP ), any other

password will get (1,⊥).)

(5) Reusing a password never raises P[WT ]. (If the password
was used with a valid fresh ticket in a previous Unlock call,

then future Unlock calls with fresh tickets will get the same

result. Thus, the probability ofKP appearing in the transcript

is never raised.)

(6) Thus, P[WT |non-WBA] ≤ P[WT |WBA] + 2k−n . �

TheoremB.3. With the ideal functionality and an uncompromised

server, no adversary who can make at most 2
k
queries to DV or the

ideal functionality can win this game with probability higher than

t
N + 2

k−n + 2−n .

Proof:

(1) GT: No adversary has more than
t
N + 2

k−n
probability of

getting a winning transcript when interacting with the ideal

functionality. (Lemma B.2.)

(2) LT: Given a losing transcript, an adversary must make a

guess about the correct value of the randomly-selected KP .

The probability that this guess will be correct is 2
−n

(Game

definition with KP chosen randomly.)

(3) Union Bound: The probability of the attacker knowing KP
is thus no higher than

t
N + 2

k−n + 2−n (Summing GT and

LT conditions.)

�

B.2 Server Compromise: Learning the User’s
Password

Another critical security property of this scheme is that the server

must never learn anything about the user’s password. We capture

this with the following game, in which we assume the server is

corrupted:

Security Game: Learn User’s Password
(1) The game is parametrized by security parameter n, dic-

tionary size N and number of tickets t , where t < N .

(2) The challenger generates two random passwords,

P1, P2.
(3) The challenger randomly generates a payload key,

KP ← {0, 1}
n
.

(4) The attacker is allowed to play the role of the server in

the protocol.

(5) The challenger honestly runs ServerSetup and

RequestTickets with the attacker playing the role of

the server, using password P1 and payload key KP . to

generate t tickets T1, ...,t .
(6) The challenger runs Unlock using password P1 and

each ticket in succession.

(7) The challenger generates a random bit b, and sends the
attacker Pb , Pb⊕1.

(8) The attacker must guess b to win the game.

B.2.1 Practical Relevance. If a compromised server can learn any-

thing about the user’s password, then it becomes a major security

threat–a single server being compromised might lead to the leak

of thousands of users’ passwords. If there’s no attacker who can

win this game with probability more than
1

2
, then the server learns

nothing at all about the user’s password–not even enough to distin-

guish the correct password from an incorrect one when given both

values. An attacker who can’t distinguish correct and incorrect

passwords also cannot mount a brute-force password search.

B.2.2 Proof.

Theorem B.4. No attacker can win the Learn User’s Password

game when the attacker and challenger are interacting via the ideal

functionality with probability higher than
1

2
.

Proof: In the ideal functionality, the server never receives any

information about the password P provided by the user. With no



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

information about the correct password, the attacker has no strategy

better than a random guess for determining b. �

B.3 Server Compromise: Violating the User’s
Privacy

The user trusts the server to assist her in key derivation, but may

not want the server to be able to determine when she is deriving

her key. This game captures a critical privacy property–the server

must not be able to determine which user is unlocking her key at

any given time.

Security Game: Violate User Privacy
(1) The game is parametrized by security parameter n, and

number of tickets t .
(2) The challenger generates two random passwords,

P1, P2, and two payload keys KP 1 and KP 2.

(3) The attacker is allowed to play the role of the server in

the protocol.

(4) The challenger honestly runs ServerSetup.
(5) The challenger honestly runs Reqest to generate t

tickets with password P1 and payload key KP 1, identi-

fying itself as user 1.

(6) The challenger honestly runs Reqest to generate t
tickets with password P2 and payload key KP 2, identi-

fying itself as user 2.

(7) For i = 1 . . . t − 1:
(a) The challenger asks the attacker which user should

make the next Unlock call, and whether he should

use the right password or not.

(b) The challenger makes the Unlock call as directed.

(8) The challenger generates a random bit b.
(9) The challenger runs Unlock using password Pb and

one of user b + 1’s tickets.
(10) The attacker must guess b to win the game.

B.3.1 Practical Relevance. We want to guarantee that the user

retains privacy from the server–she doesn’t give the server the

power to track each time she decrypts her hard drive. This game

captures the user’s privacy goal–an attacker who has compromised

the server cannot learn which user ran the Unlock protocol with

him in any given instance, even if he knows which user requested

each ticket and has observed many other uses of the same password.

Note that this assumes that the server isn’t able to simply track

the user by IP address–network-level anonymization of the user is

outside the scope of our work.

B.3.2 Proof. The proof is trivial: the ideal functionality does not in-
form the server which user is making an Unlock call, so the server

dealing with the ideal functionality never learns this information.

C PROOF OF THEOREM 5.1
Before re-stating our theorem, we note that the only random oracle

that gets programmed in the proof is HVE.
10

We also assume that

10
We note that for UC composition to hold in the programmable random oracle model,

one must, in general, assume that an independent random oracle is used for each sid

instance. In our case, we essentially use the programmability of the random oracle to

implement a non-committing encryption scheme (see [11]), by adjusting the outcome of

honest users securely erase their tickets after an unlock attempt

with that ticket has been made (as well as any other part of their

state which no longer needs to be stored).

Theorem 5.1. Under the assumption that ΠENC is a CCA2-secure

encryption scheme (see Definition A.5), ΠSIG is a 2-move blind

signature scheme (see Definition A.7) and the assumptions listed in

Section 5, the protocols for Setup, Reqest and Unlock given in

Sections 4.1, 4.2 and 4.3, UC-realize the ideal functionality provided

in Algorithms 3 and 4 under adaptive corruptions, with erasures.

To prove the theorem, we provide a simulator Sim and prove

that the resulting Ideal and Real distributions are computationally

indistinguishable. Throughout, we assume that the same ticket

(resp. alias) is never issued twice during a Reqest (resp. Unlock)

procedure in an Ideal execution with a single sid. Since each of

these events occurs with at most λ′2/2n probability, where λ′ is the
total number of tickets issued, this assumption can only reduce the

adversarial distinguishing probability by at most 2 · λ′2/2n , which
is negligible.

C.1 Description of Simulator Sim
Simulator Sim under adaptive corruptions of parties. Note that since
we assume secure channels, Sim only needs to begin simulating

the view at the moment that some party is corrupted.

Fix an environment Env, Server Server, usersU1, . . . ,Um and

adversary A. Recall that we allow the environment Env to choose

the inputs of all parties. Simulator Sim does the following:

(1) Initialization: Initialize tablesB, E,S,Z,Tgen,Tused to empty

and counters counti for i ∈ [m] to 0.

(2) Preprocessing: Let λ′i be the maximum number of tickets for

each partyUi . For i ∈ [m], j ∈ [λ
′
i ]: Generate B

i
j ← {0, 1}

n
,

Sij ← {0, 1}
n
, Z i

j ← {0, 1}
2n
. Add all generated Bij (resp.

Sij ,Z
i
j ) values to B (resp. S,Z). Let λ′ be the total number

of (Bij , S
i
j ,Z

i
j ) tuples generated.

(3) Responding to corruption requests:

Corruption of a partyUi : Sim corrupts the corresponding

ideal party and obtains its internal state, consisting of

unused tickets t i
1
, . . . , t iλi

. For j ∈ [counti ], modify entry

(U i , Sij ,B
i
j , E

i
j , F

i
j ,Z

i
j ,⊥) ∈ T to (U i , Sij ,B

i
j , E

i
j , F

i
j ,Z

i
j , t

i
j ).

For j ∈ {counti + 1, . . . , λi }:
(a) Generate Eij = ENCPKS (B

i
j ) and F ij as a blind signature

of Eij using SKS (note that since λi − counti > 0, Sim
must have already generated (PKS , SKS , PK

′
S , SK

′
S )).

(b) Add (U i , Sij , E
i
j , F

i
j ,Z

i
j , t

i
j ) to T and Eij to set E.

Sim releases tickets (Sij , E
i
j , F

i
j ,Z

i
j ).

Corruption of Server: Sim corrupts the corresponding ideal

party and obtains its ideal internal state If an Initialize

HVE to ensure that the string Zi decrypts to the correct KP value. Camenisch et al. [7]

showed that some natural non-committing encryption schemes in the programmable

random oracle model can be proven secure in the UC setting, since the simulator only

needs to program the random oracle at random inputs, which have negligible chance

of being already queried or programmed. We anticipate that a similar argument would

work for our scheme, since Di
j is unpredictable and with very high probability will

not be queried in any other session before being programmed in the target session.

However, our formal proof is only for the case where an independent random oracle

is assumed for each session.



TMPS: Ticket-Mediated Password Strengthening IACR eprint version, May 20, 2019

query has not yet been submitted to the ideal functionality,

Sim returns ⊥. Otherwise, if the server’s keys have not

yet been sampled, Sim samples (PKS , SKS , PK
′
S , SK

′
S ). Let

α1, . . . ,αλ be the aliases in the ideal internal state (if any).

Associate each row in Tused with a random alias so each

entry in Tused contains a value from {α1, . . . ,αλ } in its

final column. For i ∈ [λ − |Tused |], Generate Bi ← {0, 1}
n
,

Ei = ENCPKS (Bi ) and Fi as a blind signature of Ei . Add
all tuples (Bi , Ei , Fi ,αi ) to Tused. For each row of Tused,

release (Ei , Fi ).
(4) Responding to random oracle queries to Hpw,HKD: Sim for-

wards the query to the oracle and forwards the response

back.

(5) Responding to random oracle queries to HVE: Sim maintains

a table THVE . The table is initialized as empty. Each time A

queries HVE on input x , Sim checks the table to see if an

entry of the form (x,y) appears in the table for some y. If
yes, Sim returns y. Otherwise, Sim chooses a random y, adds
entry (x,y) to THVE and returns y to A.

(6) When responding to oracle queries, Sim also does the fol-

lowing:

• Bad Event 1: If Server is corrupted andA makes a query

to Hpw with input of the form Sij | |P̂
i
j , where S

i
j ∈ S and

(Sij , ·, ·, ·, t
i
j ) < T (for t ij , ⊥) then Sim aborts.

• Bad Event 2: If Server is not corrupted and A makes

a query to HKD with input of the form (Bij | |Ĉ
i
j ), where

Bij ∈ B, then Sim aborts.

• If Server is corrupted andA makes a query toHpw with in-

put of the form Sij | |P̂
i
j where S

i
j ∈ S, Sim finds the tuple of

the form (Sij , ·, ·, ·, t
i
j ) ∈ T and submitsUnlock(sid, t ij , P̂

i
j )

to the ideal functionality. Sim receives (Unlock, sid,α)
from the ideal functionality, and returns (sid,Unlock, 1).

If the ideal functionality returns ⊥, Sim forwards Ĉij =

Hpw(S
i
j | |P̂

i
j ) to A. If the ideal functionality returns KP ,

Sim computes Ĉij = Hpw(S
i
j | |P̂

i
j ), D

i
j = HKD(B

i
j | |Ĉ

i
j ) and

entries for (0| |Di
j ,y1), (1| |D

i
j ,y2) such that y1 | |y2 = Z i

j ⊕

(0n,KP )) to THVE . Sim returns Ĉij to A. Bad Event 3: If at
this point 0| |Di

j or 1| |D
i
j have already been queried toHVE,

Sim aborts.

(7) Responding to messages from the Reqest protocol issued

by a corruptedUi when Server is not corrupted. Sim does

the following:

(a) Generate (PKS , SKS , PK
′
S , SK

′
S ) if not yet generated.

(b) Submit Reqest(Ui , sid, 0, 0) to the ideal functionality

and receive back ticket t .
(c) Place (Ui , ∗, ∗, ∗, ∗, t) ∈ Tgen.
(d) Play the part of an honest signer with secret key SK ′S in

the blind signature protocol with the corrupted user.

(8) Responding to (sid, Reqest,Ui ) messages from Ideal Func-

tionality. Sim does the following:

(a) Set counti := counti + 1 and j := counti .
(b) Generate Eij := ENCPKS (B

i
j ).

(c) Participate in a blind signature protocol on message Eij
with the corrupted Server to obtain signature F ij .

(d) Store (Ui , S
i
j ,B

i
j , E

i
j , F

i
j ,Z

i
j ,⊥) ∈ Tgen.

(9) Responding to messages from theUnlock protocol issued by

adversaryA when Server is not corrupted.A sends (Ê, F̂ , Ĉ)
to the server.

• If a tuple of the form (·, Ê, ·, t̂, ∗) ∈ Tused, then sendUnlock(sid, t̂,⊥)
to the ideal functionality.

• Otherwise, if the signature does not verify submitUnlock(sid,⊥,⊥)

to the ideal functionality.

• Otherwise, if Ê = Eij ∈ E:

(a) Find an entry of the form (·, ·, Ê, ·, t̂) ∈ T . Add (B̂, Ê, F̂ , t, ∗)
to Tused.

(b) Bad Event 4: If there is more than one oracle query

that returned Ĉ , Sim aborts.

(c) If the unique query exists, extract the password guess

P̂ (with bit length at most n′). If it does not exist, set P̂
to ⊥. Send Unlock(sid, t̂, P̂) to the ideal functionality.

Bad Event 5: If Ĉ = Hpw(S
i
j , ∗), for some Sij ∈ S, butA

did not make an oracle query returning Ĉ , Sim aborts.

(d) If the ideal functionality returns a value KP , then set

Di
j = HKD(B

i
j | |Ĉ). Add (0| |D

i
j ,y1), (1| |D

i
j ,y2) to THVE

such that y1 | |y2 = Z i
j ⊕ (0

n,KP )) Return D j to A. Bad
Event 6: IfA has already queriedHVE on 0| |D

i
j or 1| |D

i
j ,

Sim aborts.

(e) Otherwise, return Di
j = HKD(B

i
j | |Ĉ

i
j ).

• Otherwise if Ê < E, Sim does the following:

(a) BadEvent 7: If there is no entry of the form (∗, ∗, ∗, ∗, t̂) ∈
T , Sim aborts.

(b) Find an entry of the form (∗, ∗, ∗, ∗, t̂) ∈ T and remove

it.

(c) Decrypt Ê using SKS to obtain B̂.Bad Event 8: If B̂ ∈ B,
Sim aborts.

(d) Make anUnlock request to the ideal functionalityUnlock(sid, t̂,⊥)
(e) Continue the execution honestly to recover D̂ = HKD(B̂ | |Ĉ).

Return D̂ to A.

(10) Responding to (Unlock, sid,α) messages from Ideal Func-

tionality. If Sim receives a message (sid,Unlock,α) (which
does not stem from an Unlock request submitted by Sim)

then Sim does the following:

(a) If there is some (B̂, Ê, F̂ , ∗,α) ∈ Tused. Then Sim forwards

(Ê, F̂ ) to Server, along with a random value for Ĉ .
(b) If not, update the next tuple of the form (B̂, Ê, F̂ , ∗,⊥) ∈
Tused, to (B̂, Ê, F̂ , ∗,α). Forward (Ê, F̂ ) to Server, along with
a random value for Ĉ .

(c) If Server returns ⊥, then return 0 to the ideal functionality.

(d) Otherwise, Sim receives back a D value from Server and
checks whether D was computed correctly with respect

to B̂ and Ĉ . If yes, Sim sends (sid,Unlock, 1) to the ideal

functionality. Otherwise, Sim sends (sid,Unlock, 0) to

the ideal functionality. If tuples of the form (0| |D,y1),
(1| |D,y2) are not in THVE , Sim chooses random y1,y2 and
adds (0| |D,y1), (1| |D,y2) to THVE . Bad Event 9: Ify1 | |y2 ⊕
Z = 0

n | |∗, for some Z ∈ Z, Sim aborts.



IACR eprint version, May 20, 2019 Kelsey, Dachman-Soled, Sönmez Turan, Mishra

We begin by bounding the probability that the Bad Events occur.

It is clear by inspection that Bad Event 1 occurs with probability

at most q · λ′/2n , and that Bad Event 4 occurs with probability at

most q2/2n , where q is the total number of oracle queries made by

the adversary and Sim. Moreover, it is clear that if Bad Event 2 does

not occur, then Bad Events 3 and 6 occur with probability at most

q2/2n each. We proceed to bound the remaining events (Events 2,

5, 7, 8).

LemmaC.1. Bad Event 5 occurs with atmost negligible probability

in the Ideal experiment.

We upper bound the probability of Bad Event 5 by analyzing

the probability that Ĉ = H (Sij , x), for some value of x ∈ {0, 1}n
′

.

This probability can be upper bounded by
2
n′

2
n , since there are 2

n′

possible strings of the form Sij | |x and each of these gets mapped

to a particular string Ĉ with probability
1

2
n . Setting parameters

appropriately, we have that
2
n′

2
n is negligible.

Lemma C.2. Assuming the CCA2 security of encryption scheme

ENC (see Definition A.5), the probability that Bad Event 2 or Bad

Event 8 occurs is at most negligible in the Ideal experiment.

The proof proceeds by showing that if Bad Event 2 or Bad Event

8 occurs with non-negligible probability, then there must be some

i ∈ [m], j ∈ [λ′i ] and efficient Env, A (who did not corrupt Server)
such thatA queriesHKD on the value, Bij , or, in an Unlock request,

sends an encryption Ê < E that decrypts to Bij , with non-negligible

probability.Wewill use Env,A to obtain another efficient adversary

A ′ who breaks the security of the CCA2 encryption scheme ENC.
The adversaryA ′ breaking the CCA2 security of the encryption

scheme ENC proceeds as follows: A ′ plays the part of Sim in the

Ideal experiment, with the exception that (1) It knows all the honest

users passwords and keys (since it controls Env); (2) It receives
PKS externally from its CCA2 challenger (and does not know the

corresponding SKS ), (3) It aborts and outputs 0, 1 with probability

1/2 if A requests a Server corruption. Sim chooses random strings

Bij ,B
′i
jB. Upon corruption of partyUi , A

′ Sim sends Bij ,B
′i
j back

to its CCA2 challenger. The CCA2 challenger chooses
˜b ← {0, 1}

and returns an encryption of Bij if
˜b = 0 and an encryption of B′ij

if
˜b = 1. Let E∗ denote the challenge ciphertext that A ′ receives in

return.A ′ continues to play the part of Sim, but includes challenge

ciphertext E∗ in the information returned for the corruption request

for party Ui , instead of a newly generated ciphertext. When re-

sponding to Unlock queries (Ê, F̂ ), Sim must decrypt using SKS if

Ê < E. But in this case, either (1)A ′ has not yet requested/received

its challenge ciphertext from the CCA2 challenger or (2) Ê , E∗,
since E∗ ∈ E. So A ′ forwards the decryption query Ê to its CCA2

oracle. Recall that throughout the experiment,A ′ (playing the part

of Sim) monitors all queries made to the random oracles. If an

Unlock request is made with a valid ticket that includes E∗ and
a Ĉij value corresponding to the correct password, A ′ chooses a

value for Di
j at random (without querying oracle HKD). If, at any

point, Case 1: a query to HKD of the form (Bij , ∗) is made or some

CCA2 decryption oracle query yields value Bij , then A
′
aborts the

experiment and returns 0 to its challenger. If, at any point,Case 2: a

query toHKD of the form (B′ij , ∗) is made or some CCA2 decryption

oracle query yields value B′ij , then A
′
aborts the experiment and

returns 1 to its challenger. If the experiment completes without the

above cases occurring, A ′ flips a coin and returns the outcome to

its challenger.

Now, note that if Bad Event 2 or 8 occur with non-negligible prob-

ability ρ = ρ(n), thenwemust have that Pr[ ˜b = 0∧ Case 1 occurs ] =

Pr[ ˜b = 1 ∧ Case 2 occurs ] = ρ/2.

On the other hand, it is always the case that Pr[ ˜b = 0∧ Case 2 occurs ] =

Pr[ ˜b = 1 ∧ Case 1 occurs ] = q/2n+1 + λ′/2n+1, where q is the

total number of distinct oracle queries made during the experiment.

This is because when
˜b = 0, there is no information at all about

B′ij contained in adversary A’s view (unless B′ij = Bi
′

j′ for some

(i ′, j ′) , (i, j), which occurs with probability at most λ′/2n+1) and

so A can only happen to query the oracle on B′ij at random. The

case for
˜b = 1 follows by identical reasoning.

Thus, the distinguishing advantage of CCA2 adversary A ′ is

ρ/2 − q/2n+1 − λ′/2n+1, which is non-negligible, since ρ is non-

negligible. This implies a contradiction to the CCA2 security of the

underlying encryption scheme.

Lemma C.3. Assuming the unforgeability of the blind signature

scheme (see Definition A.7), Bad Event 7 occurs with at most negli-

gible probability in the Ideal experiment.

The proof proceeds by showing that if Bad Event 7 occurs with

non-negligible probability for some efficient adversary A, then,
by definition, we obtain an efficient adversary A ′ who submits

a larger number of valid Unlock requests than there are valid

tickets obtained from the ideal functionality. But note that each

valid Unlock request is accompanied by a fresh blind signature F̂ .
Moreover, the number of valid signatures obtained from the signer

corresponds to the number of valid tickets obtained. Thus, adversary

A can be used to obtain adversary A ′ such that, according to

Definition A.7, breaks the security of the blind signature scheme.

Conditioned on the Bad Events not occurring, the only difference

between a Real and Ideal execution, is that in the Ideal execution

in Step (10b) the simulator submits the next available (Ê, F̂ ) pair,
whereas in the Real execution the order of submitted (Ê, F̂ ) pairs de-
pends on which party is making the Unlock request. However, the

blindness property of the blind signature scheme ensures that given

a set of interactions and message signature pairs, the signer cannot

tell in which order the message signature pairs were generated.

Indeed, this is the case even when (PK ′S , SK
′
S ) are adversarially

generated. Thus, the view of the adversary is indistinguishable in

the two cases. We therefore conclude with the following lemma.

LemmaC.4. Assuming the blindness of the blind signature scheme

(see Definition A.7), the Ideal and Real output distributions are

computationally indistinguishable.


	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Underlying Primitives and Functions

	3 Ticket-Mediated Password Strengthening
	3.1 The Setting and the Problem
	3.2 TMPS Overview
	3.3 Discussion

	4 The Basic Protocol
	4.1 Server Setup
	4.2 Request: Protocol for Requesting Tickets
	4.3 Unlock: Protocol for Unlocking a Ticket

	5 Security Analysis
	6 Variants of the Basic Protocol
	6.1 Limiting Password Attempts
	6.2 Adding Offline Access
	6.3 An Offline Variant with HSM
	6.4 Different Ways to Authorize Tickets

	7 Performance and Implementation
	7.1 Prototype Implementation
	7.2 Requesting a Ticket
	7.3 Unlocking a Ticket
	7.4 Storage

	8 Conclusion and Open Questions
	Acknowledgments
	References
	A Definitions
	B Game-Based Security Definitions and Proofs
	B.1 User Compromise: Stealing Tickets
	B.2 Server Compromise: Learning the User's Password
	B.3 Server Compromise: Violating the User's Privacy

	C Proof of Theorem 5.1 
	C.1 Description of Simulator Sim


