344 research outputs found

    Studies of thermochemical water-splitting cycles

    Get PDF
    Higher temperatures and more isothermal heat profiles of solar heat sources are developed. The metal oxide metal sulfate class of cycles were suited for solar heat sources. Electrochemical oxidation of SO2 and thermochemical reactions are presented. Electrolytic oxidation of sulfur dioxide in dilute sulfuric acid solutions were appropriate for metal oxide metal sulfate cycles. The cell voltage at workable current densities required for the oxidation of SO2 was critical to the efficient operation of any metal oxide metal sulfate cycle. A sulfur dioxide depolarized electrolysis cell for the splitting of water via optimization of the anode reaction is discussed. Sulfuric acid concentrations of 30 to 35 weight percent are preferred. Platinized platinum or smooth platinum gave the best anode kinetics at a given potential of the five materials examined

    Stabilizing platinum in phosphoric acid fuel cells

    Get PDF
    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time

    Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    Get PDF
    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa

    It’s the Combination: Scientific Data Review of the First Corn Silage to Bring Together Fiber and Starch Digestibility

    Full text link
    This information was presented at the 2017 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science In the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://ansci.cals.cornell.edu/extension-outreach/adult-extension/dairy-management/order-proceedings-resources.A recent study compared a newly developed brown midrib 3 corn silage with floury endosperm to a conventional corn silage and a brown midrib 3 corn silage for high-producing Holstein cows. The combination of greater rumen fiber and starch fermentability of the new hybrid resulted in greater efficiency of solids-corrected milk production and milk nitrogen efficiency compared with the brown midrib and conventional hybrids

    Calcitonin Gene-Related Peptide Partially Reverses Decreased Production of Chemokines KC and MIP-2 Following Murine Sepsis

    Full text link
    The secretion of calcitonin gene-related peptide (CGRP) and the chemokines KC and MIP-2 are increased in the animal models of endotoxemic and septic shock. We tested whether CGRP could modulate KC and MIP-2 secretion from different sources of macrophages after murine sepsis induced by cecal ligation and puncture (CLP). Macrophages were obtained from the peritoneal exudate and lung of female BALB/c mice 16 h after CLP and plated in culture with CGRP and/or LPS for 12 h. The results showed that peritoneal macrophage production of the chemokines (KC, MIP-2) and cytokines (TNF-α, IL-6) was markedly decreased in CLP mice. Alveolar macrophages did not display decreased cytokine/chemokines production after CLP. CGRP (0.1 nM–10 nM) partially reversed this decreased production of LPS-induced KC and MIP-2 from peritoneal macrophages. These results suggest that CGRP might be intimately involved in recruitment of neutrophils by promoting local production of the chemokines KC and MIP-2 in murine sepsis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44531/1/10753_2004_Article_376569.pd

    Nanofluidic transport governed by the liquid/vapour interface

    Get PDF
    Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R10-CW-09

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    Extrapulmonary small cell sarcinoma: involvement of the brain without evidence of extracranial malignancy by serial PET/CT scans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extrapulmonary small cell carcinoma (EPSCC) involving the brain is a rare manifestation of an uncommon tumor type.</p> <p>Case presentation</p> <p>We report a 59 year-old Caucasian female diagnosed with an EPSCC involving the left parietal lobe without detectable extracranial primary tumor followed by serial positron emission tomography/computed tomography (PET/CT) imaging. Histopathological examination at both initial presentation and recurrence revealed small cell carcinoma. Serial PET/CT scans of the entire body failed to reveal any extracranial [<sup>18</sup>F]2-fluoro-2-deoxy-D-glucose (FDG) avid lesions at either diagnosis or follow-up.</p> <p>Conclusion</p> <p>Chemotherapy may show a transient response in the treatment of EPSCC. Further studies are needed to help identify optimal treatment strategies. Combination PET/CT technology may be a useful tool to monitor EPSCC and assess for an occult primary malignancy.</p

    Gene deletion of P-Selectin and ICAM-1 does not inhibit neutrophil infiltration into peritoneal cavity following cecal ligation-puncture

    Get PDF
    BACKGROUND: Neutrophil infiltration is one of the critical cellular components of an inflammatory response during peritonitis. The adhesion molecules, P-selectin and intercellular adhesion molecule (ICAM)-1, mediate neutrophil-endothelial cell interactions and the subsequent neutrophil transendothelial migration during the inflammatory response. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy, suggesting that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the objective of this study was to determine the role of P-selectin and ICAM-1 in neutrophil infiltration into the peritoneal cavity during early and late phases of peritonitis. METHODS: Peritonitis was induced in both male wild-type and P-selectin/ICAM-1 double deficient (P/I null) mice by cecal ligation-puncture (CLP). Peripheral blood and peritoneal lavage were collected at 6 and 24 hours after CLP. The total leukocyte and neutrophil contents were determined, and neutrophils were identified with the aid of in situ immunohistochemical staining. Comparisons between groups were made by applying ANOVA and student t-test analysis. RESULTS: CLP induced a severe inflammatory response associated with a significant leukopenia in both wild-type and P/I null mice. Additionally, CLP caused a significant neutrophil infiltration into the peritoneal cavity that was detected in both groups of mice. However, neutrophil infiltration in the P/I null mice at 6 hours of CLP was significantly lower than the corresponding wild-type mice, which reached a similar magnitude at 24 hours of CLP. In contrast, in peritonitis induced by intraperitoneal inoculation of 2% glycogen, no significant difference in neutrophil infiltration was observed between the P/I null and wild-type mice at 6 hours of peritonitis. CONCLUSIONS: The data suggest that alternative adhesion pathway(s) independent of P-selectin and ICAM-1 can participate in neutrophil migration during peritonitis and that the mode of stimuli and duration of the injury modulate the neutrophil infiltration
    corecore