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SUMMARY 

The objective of this study was the evaluation, through both experimenta- 
tion and a literature review, of several advanced concepts for storing natural 
gas at reduced pressure. The advanced concepts included in this study were 
adsorption on high surface area carbon, adsorption in high porosity zeolite, 
storage in clathration compounds, and storage by dissolution in liquid sol- 
vents. The literature review indicated that high storage capacity could be 

obtained with adsorption systems. 

Seventeen carbon samples and seven zeolite samples were then secured and 
evaluated experimentally in a pressurized microbalance apparatus to determine 
their methane adsorption isotherm. The methane storage capacity of each sam- 

ple was also determined using a bench-scale storage system. Results indicated 
that high surface area carbons with high packing density were the best low 
pressure storage mediums. 

A simple mathematical model was used to compare adsorption storage on a 
state-of-the-art carbon with compression storage. The model indicated that a 
vehicle using adsorption storage of natural gas at 3.6  MPa (500 psig) will 
have 36% of the range, on the EPA city cycle, of a vehicle operating on a com- 
pression storage system having the same physical size and a peak storage pres- 

sure of 21 MPa (3000 psig). 
literature suggest that the storage capacity of state-of-the-art carbons could 
be improved by as much as 50%, and that adsorption systems having a capacity 

equal to compression storage at 14 MPa are possible. 

However, preliminary experiments and current 
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INTRODUCTION 

Recently there has been increased interest in the use of natural gas 
(methane) as fuel for vehicles in the United States. The primary reason for 
this interest is that natural gas is currently lower priced than either gaso- 

line or diesel fuel, but other factors are also important. For example, 
methane-fueled vehicles would decrease both oil imports and vehicular contri- 

bution to photochemical smog. At the present time, there are nearly 30,000 

natural gas fueled vehicles (NGV) in regular operation in the United States; 
most of these are part of commercial fleet operations. However, this number 
pales in significance when compared to the approximately 140,000,000 licensed 
vehicles in the U . S .  To achieve a more wide spread acceptance of N G V s  and a 
deeper market penetration, more economical methods must be developed for re- 

fueling and for on-board storage of natural gas. 

Two alternative storage approaches are available to provide compressed 
natural gas (CNG)-fueled vehicles with driving ranges comparable to those of 

liquid-fueled vehicles. These are high storage pressure at pressures up to 21 

MPa (3000 psi) and low-pressure adsorption storage at pressures below 3.6 )Pa. 

Most NGVs in operation today use high-pressure storage, and many studies are 
available to justify their use -primarily for multi-vehicle fleets. But 
only a limited amount of work has been done in low-pressure absorption storage 

where the biggest potential cost benefits lie. For example, a recent (October 
1982)  estimate of costs for converting a 70 vehicle fleet to dual fuel high 
pressure (21 MPa) operation broke down as follows: $83,500 for vehicle con- 
version equipment and $140,000 for a quick fill refueling station. When an 
overnight fill was substituted for the quick fill, refueling station costs 

dropped to $94,000, still more than half the cost of conversion. These costs 
average $3,200 per vehicle for the quick fill option and $2,500 per vehicle 

for an overnight fill refueling station. Payback periods as short as 2 years 
are possible for this fleet if the fleet averages 45,000 miles per vehicle per 
year and the combined average fuel economy is under 20 miles per gallon. 
Clearly, the high cost of compressor equipment is a major stumbling block to 

deeper market penetration. 

The,high costs of refueling stations has also helped to bring about a 

"chicken or the egg" syndrome in this fledgling industry. The private sector 
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w i l l  not  commit t h e  large c a p i t a l  expendi tures  required t o  bu i ld  pub l i c  re- 

fue l ing  s t a t i o n s  u n t i l  a s u b s t a n t i a l  market exists. The ind iv idua l  consumer, 

however, w i l l  not  opt  f o r  a dual  f u e l  conversion or  a dedicated NGV u n t i l  

t he re  i s  widespread a v a i l a b i l i t y  of fue l .  However, i f  adequate low pressure ,  

on-board s to rage  capac i ty  can be achieved, s u b s t a n t i a l  reduct ions i n  the  cos t  

of a r e fue l ing  s t a t i o n  would r e s u l t .  In  f a c t ,  a l imi t ed  number of si tes would 

be ava i l ab le ,  a t  the o u t s k i r t s  of major metropol i tan areas, where veh ic l e s  

could be re fue led  d i r e c t l y  from high pressure  (3.6 MPa and above) gas t rans-  

mission l i n e s ,  thus e n t i r e l y  e l iminat ing t h e  need f o r  compressors. Clear ly ,  

low pressure  s to rage  warrants  a c l o s e r  look. 

There 

t o  3.6 MPa 

z e o l i t e s .  

emphasized 

designated 

have been some e f f o r t s  i n  t h e  recent  pas t  t o  s t o r e  methane a t  1.5 

using phys ica l  adsorp t ion  on s o l i d  materials such as carbons and 

The most recent  work, lY2 conducted by Ford Motor Company, has 

carbon over z e o l i t e s .  Ford determined t h a t  a Union Carbide carbon 

9LXC w a s  t h e  b e s t  adsorbent of those inves t iga ted .  

The purpose of t h i s  present  e f f o r t  w a s  t o  conduct fundamental s t u d i e s  on 

carbons wi th  high su r face  areas and z e o l i t e s  wi th  high i n t e r n a l  p o r o s i t i e s .  

These s t u d i e s  i d e n t i f i e d  the  e f f e c t  on methane s to rage  of c r i t i ca l  sorbent  

c h a r a c t e r i s t i c s  such as su r face  area, pore s i z e ,  pore s i z e  d i s t r i b u t i o n ,  

p a r t i c l e  s i z e ,  and sorbent  packing dens i ty .  

The work i n  t h i s  program was divided i n t o  th ree  major tasks .  Task 1 

eva lua tes  t h e  e f f e c t  of su r f ace  area, pore s i z e ,  pore s i z e  d i s t r i b u t i o n ,  

p a r t i c l e  s i z e ,  and packing dens i ty  on t h e  methane s to rage  capac i ty  of carbons 

and z e o l i t e s .  Task 2 completed a l i t e r a t u r e  review t h a t  was a l ready  underway 

a t  IGT .and addressed a l t e r n a t e  low pressure  s torage  concepts u t i l i z i n g  claeh- 

r a t i o n  compounds and so lvents .  Task 3 summarized t h e  e n t i r e  program and 

recommends f u t u r e  research  and development. 

3 



TASK 1. ADSORPTION STUDIES 

Task 1.1 Effect of Storage Medium Characteristics on Methane Storage Capacity 

The objective of this task was to document the effect of surface area, 
pore volume, pore size distribution, particle size, and packing density on the 
methane storage capacity of carbons and zeolites at room temperature and at 
pressures up to 3.6 ma. 

A. Experimental Efforts -Carbons 

1. Suppliers 

Samples of high-surface-area carbon blacks and activated carbons were 
obtained from various manufacturers. Table 1 is a list of suppliers and 

product names. 

Table 1. LIST OF CARBONS BY SUPPLIER 

Supplier Designation 

Gulf Oil Chemicals Co. Acetylene Black 
(Shawinigan Products Div.) 50% Dense 

100% Dense 

Cabot, Corp. CSX-179-B 

IC1 Americas, Inc. 

Westvaco 

DXL-0-8334 
DARCO SG 

Nuchar WV-B 
Nuchar WV-G 

J. T. Baker Co. Acid-Washed Carbon 

CECA, Inc. GAC 50G 

Witco Chemicals JXC 4 x 6 

Calgotl Corp . 
North American Carbon 

Union Carbide 
(No longer in production) 

PCB 30 x 140 
BPL 30 X 140 

GlOl 
G104 
G2 10 
G216 

9LXC 

Sample 
No. 

c1 
c2 

c3 

c4 
c5 

C6 
c7 

C8 

c9 

c10 

c11 
c12 

C13 
C14 
C15 
C16 

C17 



2 .  Residue Af te r  I g n i t i o n  

One-gram samples of each of these  17 carbons were placed i n  weighed, 

porce la in  c r u c i b l e s  and heated overnight i n  air  a t  1000°C. 

determined, and where poss ib l e  the  res idue  present  a f t e r  i g n i t i o n  w a s  re- 

covered. Some of t he  a c t i v a t e d  carbons obtained commercially are i n  the  form 

of c y l i n d r i c a l  p e l l e t s  and conta in  a c lay  binder.  Others have been impreg- 

nated with inorganic  materials t o  enhance t h e i r  a b i l i t y  t o  absorb r e a c t i v e  

gases  such as hydrogen cyanide. S t i l l  o the r s ,  because of t h e i r  o r ig in ,  con- 

t a i n  a l k a l i  metal carbonates  or  a l k a l i n e  e a r t h  phosphates and s u l f a t e s .  It i s  

important t o  know how much of each sample i s  carbon i n  order  t h a t  only high 

pu r i ty  carbons might be used t o  eva lua te  t h e  importance of sur face  area and 

pore volume. Such information w i l l  be e s s e n t i a l  i n  t he  modeling e f f o r t  t o  be 

undertaken i n  la ter  s t ages  of Task 1. Resul t s  are l i s t e d  i n  Table 2. 

Weight l o s s  w a s  

3 .  Acidi ty  

The key t o  t h e  adsorp t ion  of gases on high-surface-area ac t iva t ed  carbons 

is the  na ture  of t he  carbon sur face .  The a c t i v a t i o n  of charcoal ,  f o r  example, 

' by p a r t i a l  ox ida t ion  i n  a i r  produces an uns tab le  su r face  layer .  Upon contact  

wi th  air  a t  room temperature,  t h i s  uns tab le  l a y e r  r e v e r t s  t o  a more s t a b l e  

modif icat ion c a l l e d  oxidized charcoal.  This  oxidized charcoal  possesses a 

v a r i e t y  of carboxyl and carbonyl groups on i t s  sur face  t h a t  con t r ibu te  s ig-  

n i f i c a n t l y  t o  its adsorp t ion  p rope r t i e s .  Boem, f o r  example, has charac te r ized  

the  sur face  groups on oxidized charcoal  by t i t r a t i o n  wi th  bases of d i f f e r e n t  

s t r e n g t h s  and by chemical a n a l y ~ i s . ~  H e  proposes t h a t  oxidized charcoal  has 

a t  least four  types of su r face  s t r u c t u r e s  (Figure 1). S t ruc tu res  I1 and 111 

both possess carboxyl ic  ac id  groups while  S t ruc tu re  IV has p o s i t i v e l y  charged 

counter ions a s soc ia t ed  wi th  it .  When mixed wi th  water, S t ruc tu res  11 and 111 

can d i s s o c i a t e  t o  g ive  a d i s t i n c t l y  ac id  cha rac t e r  t o  t h e  water; S t ruc tu re  I V  

can hydrolyze t o  y i e l d  a base. Although q u a n t i t a t i v e  chemical charac te r iza-  

t i o n  of t he  17 carbon samples with r e spec t  t o  the  na tu re  of t h e  su r face  w a s  

beyond t h e  scope of t he  present  program, some i n d i c a t i o n  of t he  sur face  func- 

t i o n a l i t y  was obtained by mixing t h e  carbon with water and measuring t h e  pH. 

One-gram samples of each of t he  17 carbons were placed i n  approximately 

50 mL of degassed, deionized water and mixed i n  a high-speed blender f o r  1 

minute under a n i t rogen  atmosphere. The r e s u l t i n g  suspension w a s  allowed t o  

se t t le  f o r  10 minutes,  and t h e  pH of the  so lu t ion  w a s  then determined using a 
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Table 2. ANALYTICAL DATA FOR CARBON SAMPLES 

Residue a f t e r  pH of Carbon 
Sample No. I g n i t i o n ,  X Residue Color Sample 

c1 

c2 

c3 

c4 

c5 

C6 

c7 

C 8  

c9 

c10 

c11 

c12 

C13 

C14 

C15 

C16 

. C17 

<O .5 

<0.5 

(0.3 

7.6 

14.5 

3.9 - 
6.6 

<0.3 

13.5 

<0.1 

82  .O 

73.6 

11.8 

-- 
Orange 

Cream 

Colo r l e s s  Glass 

Orange 

White 

-- 
Orange 

Co lo r l e s s  Glass 

Co lo r l e s s  Glass 

5.3 

5.4 

10.1 

8.4 

8.1 

3.8 

10.0 

6.3 

8.3 

9 e8 

9.6 

9.7 

6.4 

12.0 Co lo r l e s s  Glass 2.6 

1.5 Co lo r l e s s  Glass 9.9 

1.2 Co lo r l e s s  Glass 9.6 

1 .o Black F i b e r s  9.9 

6 



O= kH 
0 0  
I I  

HO 

I rI 

0 0  

HO-C C-OH 
II II 

O a H  

0 0  

-0 

m Ip 

F i g u r e  1. FOUR TYPES OF SURFACE STRUCTURES FOUND I N  OXIDIZED 
CHARCOAL AS PROPOSED BY BOEM I N  REFERENCE 3 
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Corning Model 476223 Semi Micro Combined Electrode and a Markson Scientific 

Model 90 digital pH meter. The results are listed in Table 2. It should be 
noted that with those carbons having a high amount of residue after ignition, 
a substantial contribution to pH could come from sources other than carbon. 

4. Surface Area Determination - Theory 

The physical adsorption of gas molecules onto the surface of 'a solid 

results from relatively weak interaction between molecules of the solid and 
molecules of the gas. This interaction is frequently referred to as van der 
Waal's forces. Physical adsorption contrasts with chemical adsorption, where 
chemical bonds are responsible for the interaction between solid and gas. In 
physi'cal adsorption, the quantity of adsorbed gas increases with decreasing 
temperature. In chemical adsorption, because it depends upon chemical reac- 
tion, the quantity of adsorbed gas decreases with decreasing temperature. For 
this reason, adsorption measurements to determine surface area or pore distri- 
bution are made at lower temperatures where physical adsorption predominates. 

Brunauer, Emmett, and Teller (B.E.T.)4,5 have derived the following expression 
for relating the volume of gas adsorbed to the nature of the solid surface and 
the temperature and pressure of the gas: 

vm CP 
- P) [l. + (C - 1) P/Psl v =  a (Ps 

where - 
Va = Volume of adsorbed gas 

Vm = Volume of gas required to form a monolayer over entire surface 

P = Pressure of gas 

Ps = Equilibrium vapor pressure of gas and its liquid at temperature of 
,measurement (760 torr at 77.35'K for nitrogen) 

C = A constant dependent upon the nature of the solid adsorbent. 

This expression describes the great majority of low-temperature adsorption 
data. Vm can be calculated from a series of physical measurements of the 
volume of gas adsorbed as a function of pressure at a fixed temperature by 

rearranging Equation 1 to a linear form: 

8 



1 c - 1  P = -  +- - 
S 

P 
Va(Ps - P) vmc vmc P 

A plot of P/Va (Ps - P) versus P/Ps gives a straight line with an intercept at 
l/VmC and a slope of (C - l)/V,C. 
a series of such measurements. The linearity of the B.E.T. equation can be 
expected to hold only in the region of pressures where P/Ps is between 0.05 

and 0.3 .  

ences 4 and 5. 

The value of Vm is readily determined from 

A more detailed discussion of B.E.T. theory can be found in Refer- 

5. Surface Area Determination - Practice 
The actual surface area was determined on an ORR Surface-Area Pore-Volume 

Analyzer. The procedure used is as follows. 

A weighed carbon sample is placed in a small containment vessel and 
attached through a valve to a gas manifold of known volume, VI. 
warmed to over 100°C under a vacuum (<lo microns), then sealed off from the 
manifold and cooled to room temperature. The manifold is charged with helium 

to a known pressure, PI. 
opened to the manifold, where upon the manifold pressure drops to P2. The 
volume of the containment vessel with sample, Vc, can now be calculated as 
follows :, 

The sample is 

The containment vessel with the sample is then 

plvl =--  vc P2 ( 3 )  

This procedure assumes that no helium adsorbs on the sample at these tempera- 
tures. The containment vessel and sample are again evacuated and then cooled 
with liquid nitrogen. In a manner similar to that above, the manifold is 
pressurized again but with nitrogen at room temperature, TR, and the pressure, 
P1, is accurately determined. 
vessel, allowed to come to equilibrium, and the new pressure, P2, is measured. 

Using Equation 4 ,  the volume of gas adsorbed, Va, at pressure P2 can be calcu- 
lated. 

The manifold is then opened to the containment 

'1'1 '2'1 '2'C 760 
+m+TE a 

- = -  

TR TR 
( 4 )  

9 



The process is then repeated f o r  s eve ra l  incremental  add i t ions  of n i t rogen  

gas ,  with a d d i t i o n a l  t e r m s  being added t o  Equation 4 t o  account f o r  t h e  f a c t  

t h a t  the  i n i t i a l  p ressure  is no longer zero. I n  t h i s  way, s eve ra l  simultane- 

ous values  f o r  Va and P2 can be generated from which a B.E.T. p l o t  can be con- 

s t r u c t e d  using Equation 2. 

The above d iscuss ion  is somewhat s impl i f i ed  i n  t h a t  we have neglected 

seve ra l  co r rec t ions  t o  Va t h a t  must be included because of t h e  nonideal  

behavior of n i t rogen  and because of p e c u l i a r i t i e s  of t h e  instrument i t s e l f .  

But once a cor rec ted  B.E.T. p l o t  i s  made u s i n g ' t h e  var ious  Va versus  P2/Ps 
d a t a  poin ts ,  the s p e c i f i c  su r face  area of the sample  may be ca l cu la t ed  from 

the  fol lowing formula: 

M.A. x N S p e c i f i c  Surface Area = M.V. (Slope + I n t e r c e p t )  

where - 
M.A. = Molecular area i n  cm2 (16.2 X cm2 f o r  n i t rogen)  

N = Avogadro's number 

M.V. = Molar volume i n  cm 3 

This  equat ion can be s impl i f i ed  t o  Equation 6 f o r  ni t rogen:  

4.35 
Slope + I n t e r c e p t  S p e c i f i c  Surface Area = 

The r e s u l t s  f o r  t he  s p e c i f i c  su r face  area determinat ions f o r  t h e  17 carbon 

samples are l i s t e d  i n  Table 3. It should be noted t h a t  with high su r face  area 

samples where Vm is l a r g e ,  t h e  s lope  and the  i n t e r c e p t  become s m a l l ,  thus  in- 

c reas ing  measurement e r r o r .  Although the  s p e c i f i c  su r face  areas are given t o  

th ree  s i g n i f i c a n t  f i g u r e s  i n  Table 3, the  r e l a t i v e  e r r o r  f o r  these  measure- 

ments may be as much as &lo%. 

6 .  Packing Density 

The packing dens i ty  of t he  adsorbent ,  def ined he re  as t h e  mass i n  grams 

of one cubic  cent imeter  of s e t t l e d  ma te r i a l ,  is one of the  cr i t ical  parameters 

assoc ia ted  wi th  the  use of adsorbents  f o r  CNG s to rage  i n  automotive vehic les .  

Packing dens i ty  can be convenient ly  measured by p lac ing  a weighed amount of 

material i n  a graduated cy l inde r  and v ib ra t ing  the  cy l inde r  a rate of 100 .Hz 

10 



Sample 
Designation 

c1 
c2 

c3 

c4 

c5 

C6 

c7 

C8 

c9 

c10 

c11 

c12 

C13 

C14 

C15 

C16 

C17 

Table 3. SPECIFIC SURFACE AREA, APPARENT DENSITY, AND 
SURFACE AREA PER LITER FOR 17 CARBON SAMPLES 

S p e c i f i c  
Surface  Area, m2/g 

76 

74 

1600 

1030 

700 

1610 

1260 

480 

1030 

1050 

1270 

1100 

1680 

1650 

1420 

1370 

1280 

Packing 
Density,  g/cm3 

0.10 

0.20 

0.13 

0.44 

0.45 

0.30 

0.45 

0.37 

0.56 

0.45 

0.44 

0 -47 

0.30 

0.30 

0.50 

0.50 , 

0.32 

Surfac  Area, 
k m  /L 'i. 

0.008 

0.015 

0.21 

0.45 

0.32 

0.48 

0.57 

0.18 

0.58 

0.47 

0.56 

0.52 

0.50 

0.50 

0.71 

0.69 

0.41 
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o r  higher  f o r  s e v e r a l  minutes t o  allow t h e  sample t o  set t le  under t h e  in f lu -  

ence of g rav i ty .  Packing dens i ty  measured i n  t h i s  way can be used t o  calcu- 

l a t e  t h e  quan t i ty  of material t h a t  can be placed i n  a s torage  cy l inder  from a 

free-flowing r e se rvo i r .  Table 3 l i s ts  t h e  packing dens i ty  of t h e  17 carbon 

samples i n  grams per  cubic  centimeter.  The s p e c i f i c  su r face  a rea  and the  

packing dens i ty  can a l s o  be used t o  estimate the  su r face  area a v a i l a b l e  f o r  

s torage  i n  a 1-liter conta iner  f i l l e d  wi th  carbon. The f i n a l  column of 

Table 3 conta ins  such es t imates  f o r  the var ious carbon samples. 

7. Par t ic le  S ize  -Ac t iva t ed  Carbon P e l l e t s  

A l l  of t he  a c t i v a t e d  carbons suppl ied  t o  us were i n  the  form of pe l le i s  

o r  granules  while  t he  carbon blacks were i n  the  form of powders. I n  the  csze 

of the  ac t iva t ed -ca rbons ,  t he  p a r t i c l e  s i z e s  f e l l  w i th in  narrow l i m i t s  which 

is  l i k e l y  t h e  r e s u l t  of a screening  s t e p  i n  t h e i r  manufacture. The var ious  

s u p p l i e r s  prclvided us wi th  information on the  upper and lower l i m i t s  of par- 

t i c l e  s ize  f o r  each sample as measured i n  U.S. mesh. Table 4 i s  a p a r t i c l e  

s i z e  conversion t a b l e  comparing the  U.S. mesh s i z e  wi th  the  equiva len t  par- 

t i c l e  diameter i n  microns. This  t a b l e  is included s o l e l y  f o r  convenience. 

Table  5 conta ins  a l i s t  of t he  17 carbon samples and t h e  maximum and minimum 

mesh s i z e s  f o r  t h e  13 a c t i v a t e d  carbons. Because b e t t e r  than 95% of t h e  par- 

t ic les  i n  any given sample f e l l  w i th in  t h e  narrow l i m i t s  of s i z e  l i s t e d  by the  

r e spec t ive  s u p p l i e r ,  no f u r t h e r  a t t e m p t  was made t o  determine a p a r t i c l e  s i z e  

d i s t r i b u t i o n  f o r  the a c t i v a t e d  carbon samples. 

8. Par t ic le  S ize  D i s t r i b u t i o n  - Carbon Black Powders 

The p a r t i c l e  s i z e  d i s t r i b u t i o n s  f o r  t h e  four  carbon black samples were 

determined on an automated Coulter  counter.  Table 6 l is ts  the  r e s u l t s  f o r  

50% dense Shawinigan Acetylene Black. These r e s u l t s  do not' agree wi th  the  

par t ic le  s i z e  d i s t r i b u t i o n  provided by t h e  manufacturer. When viewed under an  

e l e c t r o n  microscope, Shawinigan Acetylene Black appears t o  cons i s t  of spheri-  

cal par t ic les  clumped toge ther  i n  much l a r g e r  agglomerates. The median par- 

t i c l e  s i z e  f o r  t hese  spheres  as determined from a micrograph is  42.5 nm 

whereas the  mean agglomerate s i z e  as determined by t h e  Coulter  counter  i s  23 

um o r  about 540 times larger. Since it  i s  the  agglomerate s i z e  r a t h e r  than 

the  par t ic le  s i z e  which determines handling c h a r a c t e r i s t i c s  such as packing 

dens i ty ,  t h e  agglomerate s i z e  d i s t r i b u t i o n  is the  more important parameter. 

Table 7 l i s ts  the  agglomerate s i z e  d i s t r i b u t i o n  f o r  100% dense Shawinigan 

. ,  

1 2  



Mesh 
Size - 

4 

6 

8 

1 2  

16 

20 

30 

40 

50 

60 

70 

80 

100 

140 

200 

230 

270 

325 

400 

625 

1250 

2500 

Table 4.  PARTICLE SIZE CONVERSION TABLE 

Approximate Size 
in Microns* 

4760 

3360 

2380 

1680 

1190 

840 

590 

420 

297 

250 

2 10 

177 

149 

105 

74  

62 

53 

44 

37 

20 

10 

5 

* 1 nun = 1000 microns. 
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c1 
c2 

c3 

c4 

c5 

C6 

c7 

C8 

c9 

c10 

c11 

c12 

C13 

C14 

C15 

C16 
C17 

Table 5 .  PARTICLE SIZE DISTRIBUTION BY MESH SIZE 

Carbon 

Shawinigan 50% 

Shawinigan 100% 

Cab0 t CSX-17 9-B 

I C 1  DXL-0-8334 

I C 1  DARCO-SG 

Nuchar WV-B 

Nuchar WV-G 

Baker Acid Washed 

CECA GAC-5OG 

Witcarb J X C  

Calgon PCB 

Calgon BPL 

North American G l O l  

North American G104 

North American 6210 

North American G216 
Union Carbide 9LXC 

S ize  

( s e e  Table 6)  

(see Table 7)  

( s e e  Table 8) 

20 x 60 mesh . 

20 x 60 mesh 

14 x 35 mesh 

12  x 14 mesh 

( see  Table 9 )  

20 x 50 mesh 

4 x 6 mesh 

30 x 140 ,mesh 

30 x 140 mesh 

10 x 25 mesh 

14 x 35 mesh 

8 x 16 mesh 

14 x 35 mesh 
12 x 28 mesh 

14 



Table 6 .  PARTICLE SIZE DISTRIBUTION FOR 50% DENSE 
SHAWINIGAN ACETYLENE BLACK 

S i z e  Range 

Less than 4 microns 

4.0 to 5.0 microns 

5.0 t o  6.4 microns 

6.4 t o  8.0 microns 

8.0 t o  10.1 microns 

10.1 t o  12.7 microns 

12.7 t o  16.0 microns 

16.0 t o  20.2 microns 

20.2 t o  25.4 microns 

25.4 t o  32.0 microns 

32.0 t o  40.3 microns 

40.3 to 50.8 microns 

Larger than 50.8 microns, 

Weight Percent 

0 

1.1 

2.4 

4.4 

5.9 

6.5 

7.6 

11.2 

16 .O 

20.4 

13.7 

6.9 

3 09 
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Table 7. PARTICLE SIZE DISTRIBUTION OF 100% DENSE 
SHAWINIGAN ACETYLENE BLACK 

Size Range 

Less thaq 4 microns 

4.0 t o  5.0 microns 

5.0 t o  6.4 microns 

6.4 t o  8.0 microns 

8.0 to  10.1 microns 

10.1 t o  12.7 microns 

12.7 to 16.0 microns 

16.0 to  20.2 microns 

20.2 to 25.4 microns 

25.4 t o  32.0 microns 

32.0 to 40.3 microns 

40.3 to  50.8 microns 

Larger than 50.8 microns 

Weight Percent 

0 

5.9 

10.3 

10.3 

9.9 

9.8 

10.1 

11.2 

14 04 

10.7 

4.8 

1.6 

0 
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Acetylene Black; Table 8, f o r  Cabot Corporation carbon black CSX-179-B; and 

Table 9, the agglomerate s i z e  d i s t r i b u t i o n  f o r  Baker-Acid Washed Carbon. 

9. Cumulative Pore Volume 

Both n i t rogen  adsorp t ion  and desorp t ion  isotherms were determined at 78'K 

f o r  a l l  carbon samples and the  r e s u l t s  used t o  estimate the  cumulative pore 

volume of each sample and t o  ascertain t h e  pore s i z e  d i s t r i b u t i o n .  Table 10 

l is ts  16 carbon samples and t h e  cumulative pore volume of a l l  pores less than 

200 Angstroms i n  radius .  It should be noted t h a t  our cumulative numbers have 

a cut-off f o r  maximum pore r ad ius  a t  200 Angstroms and, t he re fo re ,  pores  l a r g e r  

than  200 8 are ignored, s i n c e  the  i n t e r i o r  sur faces  of pores l a r g e r  than 2008 

i n  rad ius  would be l i t t l e  d i f f e r e n t  from f l a t  sur faces .  However, as a conse- 

quence, our cumulative pore volume may d i f f e r  somewhat from t h e  t o t a l  pore 

volume numbers adve r t i s ed  f o r  these  carbons by t h e i r  var ious manufacturers. 

It can be seen from Table 10 t h a t  Cabot's CSX-179-B h i s  t h e  h ighes t  cumu- 

l a t i v e  pore volume of t h e  carbon blacks,  while  Nuchar WV-B is h ighes t  among 

t h e  ac t ivased  carbons. Of p a r t i c u l a r  i n t e r e s t  are the  four  North American 

Carbon, Inc., samples. The 100 series samples have high cumulative pore 

volume while  t h e  200 series have t h e  lowest measured. 

10. Pore S ize  D i s t r i b u t i o n  

The n i t rogen  desorp t ion  isotherm d a t a  were used t o  p l o t  pore s i z e  d i s t r i -  

but ions f o r  16 of t h e  carbon samples. Subsequent work ind ica ted  no i d e n t i f i -  

a b l e  r e l a t i o n s h i p  between pore s i z e  d i s t r i b u t i o n  and methane s torage  capaci ty .  

Ind iv idua l  p l o t s  of pore s i z e  d i s t r i b u t i o n  as pore volume versus pore r ad ius  

are provided i n  Appendix A f o r  carbons C1 through C16. 

11. Methane Adsorption Isotherms f o r  Carbons 

Figure 2 is a schematic diagram of t h e  apparatus  used t o  determine the  

methane adsorp t ion  isotherms f o r  s e l e c t e d  carbon and z e o l i t e  samples. The 

experimental  technique used was t o  suspend a measured quan t i ty  of adsorbent 

from an e l e c t r o n i c  t ransducer  type balance i n  a methane atmosphere and de ter -  

mine the  weight of t h e  sample as t h e  v e s s e l  i s  pressur ized  from 101.4 KPa (0 

ps ig)  t o  3.6 MPa (500 ps ig)  i n  50 p s i  s t eps .  Weight changes as l i t t l e  as 1 

p a r t  i n  2000 can be measured wi th  t h i s  apparatus.  However, it is necessary t o  

make co r rec t ions  on t h e  ind ica ted  weight f o r  t h e  buoyancy of t he  sample. The 

fol lowing may serve  as an example. I n  t h e  carbon experiments, a sample of J X C  

17 



Table 8. PARTICLE SIZE DISTRIBUTION FOR 
CABOT CSX- 17 9-B 

S i z e  Range 

Less than  4 microns 

4.0 t o  5.0 microns 

5.0 t o  6.4 microns 

6.4 t o  8.0 microns 

8.0 t o  10.1 microns 

10.1 t o  12.7 microns 

12.7 t o  16.0 microns 

16.0 t o  20.2 microns 

20.2 t o  25.4 microns 

25.4 t o  32.0 microns 

32.0 t o  40.3 microns 

40.3 t o  50.8 microns 

Larger  than 50.8 microns 

Weight Percent  

0 

7.7 

12.5 

14 .O 
15.4 

14.7 

11.8 

8.2 

4.9 

2.7 

1.5 

0.8 

5.8 
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Table 9. PARTICLE SIZE DISTRIBUTION FOR BAKER ACID WASHED CARBON 

Size  Range 

Less than 3.2 microns 

3.2 to 4.0 microns 

4.0 to 5.0 microns 

5.0 t o  6.4 microns 

6.4 t o  8.0 microns 

8.0 to 10.1 microns 

10.1 t o  12.7 microns 

12.7 t o  16.0 microns 

16.0 t o  20.2 microns 

20.2 to 25.4 microns 

25.4 to 32.0 microns 

32.0 t o  40.3 microns 

40.3 to 75 microns 

75 to 100 microns 

150 to 300 microns 

300 t o  600 microns 

Larger than 600 microns 

Weight Percent 

0 

1.3 

2.7 

3 04 

4.4 

4.2 

2.4 

1.3 

1.1 

0.7 

0.5 

0.2 

17.5 

35.3 

17.7 

6 .9 

0.4 
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Number 

c1 
c2 
c3 

c4 
c5 
C6 
c7 
C8 
c9 
c10 
c11 
c12 
C13 
C14 

C15 
C16 

Table 10. * CUMULATIVE PORE VOLUME FOR PORES OF 
RADIUS LESS THAN 200 ANGSTROMS 

Carbon 

Shawinigan 50% 

Shawinigan 100% 
Cabot CSC-179-B 

IC1 DXL-0-8334 
IC1 DARCO-SG 
Nuchar WV-B 
Nuchar WV-G 
Baker Acid Washed 
CECA GAC-50G 
Witcarb JXC 
Calgon P.CB 
Calgon BPL 
North American GlOl 
North American G104 
North American G210 
North American G216 

Pore Volume 

0.10 ml/g 
0.11 mug 
0.99 ml/g 
0.17 ml/g 
0.53 ml/g 
0.66 ml/g 
0.14 ml/g 
0.82 ml/g 

0.09 ml/g 
0.13 ml/g 
0.05 ml/g 
0.09 ml/g 

0.54 ml/g 
0.58 ml/g 
0.024 ml/g 

0.026 ml/g 
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Figure 2. EXPERIMENTAL APPARATUS USED TO DETERMINE 
METHANE ADSORPTION ISOTHERM 
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carbon weighing 10.076 grams under one atmosphere pressure (101.3 KPa) of 
methane was pressurized to 35 atmospheres (3.6 MPa). Using the adsorption 

isotherm data previously obtained, we would expect this sample to gain 0.856 
gram in weight due to methane adsorption. The microbalance, however, indi- 

cated a gain of only 0.746 gram. The difference, 0.11 gram, is due to 
buoyancy effects. 
actual volume of only 4.80 cc and displaces 0.110 gram of methane at 35 atmo- 
spheres. The key to calculating the buoyancy correction is the actual density 

of the solid material. Witco's JXC carbon (C10) has a packing density of only 
450 grams/liter; however, almost 80% of a sample of JXC is accessible void 

space which can fill with compressed gas and does not contribute to buoyancy. 
In the case of most of the carbon samples, the solid material contributing to 
buoyancy effects can be considered to have an effective density equal to that 
of graphite, 2100 grams/liter. 

The carbon in a 10.076 gram sample of JXC carbon has an 

Adsorption isotherms for each of the carbons C3 through C17 are provided 
in Appendix B. Table 11 summarizes the results. 
others are working with adsorption systems operating at about 2.2 MPa (300 
psig), we have reported data for methane adsorption at this pressure in Table 
11. 
which is the maximum pressure used in the present study. Because of the par- 

ticulate nature of the Shawinagan Acetylene Blacks, these carbons tended to 
€luidize during depressurization of the microbalance and reliable adsorption 

measurements were not possible for Samples C1 and C2. 

Since Ford Motor Co.' and 

We have also included data for methane adsorption at 3.6 MPa (500 psig) 

B. Experimental Effort - Molecular Sieves 
1. Description of Samples 

Zeolites. Six samples of commercially available crystalline molecular 
sieves were obtained from the Linde Division of Union Carbide.. Four of these 

samples are zeolites of the Sodalite Group, one sample is of the Chabazite 

Group, and one sample is of the Mordenite Group. One additional sample was 
prepared by ion exchange, Table 12 lists the samples by experimental 
designation (Zl through 27) and provides information on structure, critical 

diameter, and nonframework cation. 
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Sample 
NO s 

Table 11. ADSORPTION CHARACTERISTICS OF CARBON SAMPLES* 

Methane Adsorbed in 

c3 
c4 
c5 
C6 
c7 
C8 
c9 
c10 
c11 
c12 
C13 
C14 
C15 
C16 
C17 

Packing 
Density 

0.15 
0.42 
0.44 
0.26 

0.49 
0.40 
0.54 
0.45 
0.44 
0.47 
0.24 
0.27 
0.49 
0.45 
0.32 

grams/gram 
2.2 Wa 3.6 W a  

0.099 
0.074 
0.050 
0.072 
0.085 
0.042 
0.069 
0.083 
0.090 
0.074 
0 -079 
0.068 

0.092 
0.095 
0.101 

0.110 
0.081 
0.053 
0.085 
0.091 
0.045 
0.076 
0.087 
0.095 
0.079 
0.091 
0.078 
0.099 
0.103 
0.115 

* At 23'c. 
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Table 12. INFORMATION ON VARIOUS ZEOLITES 

Linde Critical Nonframework 
Designation Structure Designation Diameter, 8 Cat ion 

z1 
22 
23 
24 
25 
26 
27 

Zeolite A 3A 3 
Zeolite A 4A 4 
Zeolite A 5A 5 
Zeolite X 13X 10 

11 Zeolite A -- 
'Mor deni t e AW-300 3 to 4 
Chabaz ite AW-500 4 to 5 

Potassium 
Sodium 
Ca 1 cium 
Sodium 
Lithium 
Mixed 
Mixed 

The structure of the Sodalite Group, Zeolite A, is based on frameworks 
that are simple arrangements of truncated octahedra. These truncated octa- 

hedra share square and hexagonal faces. In the structure of Zeolite A, the 
octahedra are linked by adjoining cubes (Figure 3). This produces a central 
truncated octahedron with an internal cavity of 118 diameter. Access to this 
cavity is by way of the six apertures, which are the cubes with a free 
diameter of 4.28. In Zeolite A of the formula Na2[(A102)12(Si02)12]027 H20, 

there are 12 nonframework sodium ions per unit cell. Eight of these sodium 
ions reside in the center of the eight hexagonal faces and are referred to as 
Type I cations. The other four cations, Type 11, occupy positions adjacent to 
the openings that interconnect the cavities. When completely hydrated, these 
four ions probably float within a coordination sphere of water molecules; but 

when dehydrated, they locate on the walls of the cavity and exert an influence 
on the critical diameter of the opening between cavities. The critical 

diameter is, for our purposes, the largest diameter a gas molecule can have 
and still pass between cavities. As is illustrated in Table 12, the large 
diameter of the potassium ion (2.668) restricts the critical diameter in Type 
A zeolites to 38. Thus, methane with a kinetic diameter of 3.88 cannot gain 

access to the interior of the cavity, whereas water molecules with a kinetic 
dfintteter of 2.658 can be admitted. 
ions (sodium and lithium, having ionic diameters of 1.90A and 1.368, respec- 
tively) increase the critical diameter to 48 and thus permit methane to enter 
the cavity. Dipositive calcium ions increase the critical diameter to 58 

partly because of size, 1.988, and partly by perturbing the framework itself. 
The Type X zeolites, on the other hand, have a different crystallographic 
morphology in which adjacent cavities share large hexagonal openings. Type X 

Type A zeolites with smaller nonframework 
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Figure 3 .  CUBIC ARRAY OF TRUNCATED OCTAHEDRA 
I N  TYPE A ZEOLITE 
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zeolites have a critical diameter of 108. In dehydrated chabazite, the cavi- 
ties share ellipsoidal apertures with dimensions of 4.48 by 3.18. The zeolite 

mordenite possesses a predominance of 5-member rings that align to form circu- 
lar channels with a free diameter of 6.68. This structure is sensitive to 
stacking faults, however, which can reduce the large-channel diameter from 6.6 
to 48. A more detailed discussion of crystalline molecular sieves can be 
found in Reference 6. Of importance here is that the nonframework cations in 
both Type A and Type X zeolites can easily be exchanged. Thus, lithium- 
containing Type A zeolite can be prepared from sodium-containing material 
(Linde 4A). 

The phenomenon of ion exchange was used to prepare Sample 25. The fol- 
lowing procedure was used. 

One hundred grams of Linde 4A molecular sieves were placed in a 1-liter 
flask fitted with a reflux condenser, and 500 mL, of a 0.1M lithium chloride 
solution was added. The mixture was heated to 8OoC and maintained at this 
temperature for 24 hours with occasional gentle agitation. After 24 hours, 

the LiCl solution was drained and replaced with 500 of fresh LiCl solution 
and reheated. This process was repeated through four consecutive 24-hour 
treatments. The zeolite was then recovered and washed 10 times with 500 mT., 

each of deionized water, drained, and allowed to air dry for 24 hours at room 

temperature. 
for 1 week, at 36OOC in air for 24 hours, and at 36OOC for 24 hours under 
vacuum (<lo microns). The vacuum flask was finally cooled and pressurized 
with dry argon to 1 atm. The lithium-containing zeolite was then loaded into 

an airtight container under an argon atmosphere and stored for later use. 

The lithium-containing zeolite was then dried at 200°C in air 

2. Adsorption Isotherms 

All zeolite samples were dried prior to determining their adsorption 
isotherm. ' The drying process used was that of heating the sample to 36OOC for 

24 hours under a continually increasing vacuum which was below 10 microns 

pressure at the end of the 24 hour period. The samples were cooled under 
vacuum and then pressurized to 1 atmosphere with dry argon. The sample was 
transported to the microbalance under argon and quickly transferred to the 
sample pan in a manner designed to limit its exposure to moisture laden air 
(ambient laboratory conditions) to a few minutes. 
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A problem was encountered when at tempts  were made t o  c a l c u l a t e  a correc- 

t i o n  f a c t o r  f o r  buoyancy. 

I n  t h e  case of t he  z e o l i t e s ,  ca l cu la t ions  are not easy. For example, 

when a sample of a c t i v a t e d  13X z e o l i t e  p e l l e t s  i s  packed i n t o  a graduated 

cy l inder  and weighed, it e x h i b i t s  a packing dens i ty  of 0.66 g/cc. When a 

s i n g l e  p e l l e t  i s  weighed and i t s  geometr ical  volume is determined, an apparent 

dens i ty  of 1.29 g/cc  i s  ca lcu la ted .  However, Linde claims t h a t  13X p e l l e t s  

contain an i n t e r n a l  void space of 0.36 cc/g.  

13X has an apparent dens i ty  of 1.29 g /cc  and one gram would occupy 0.77 cc, 

0.36 cc of t h i s  volume is  void space and only 0.41 cc is  s o l i d  material. 

Thus, f o r  purposes of c a l c u l a t i n g  buoyancy e f f e c t s ,  t h e  e f f e c t i v e  dens i ty  of 

13X z e o l i t e  i s  2.44 cc/g.  However, the  ape r tu re  s i z e  f o r  3A z e o l i t e  i s  no t  

access ib l e  t o  methane and cannot f i l l  w i th  compressed gas. Consequently, t h i s  

void volume w i l l  con t r ibu te  t o  buoyancy e f f e c t s .  I n  5A z e o l i t e ,  t h e  ape r tu re  

s i z e  i s  l a r g e r  than t h e  k i n e t i c  diameter of methane and the  0.30 cc/g void 

volume i n  5A z e o l i t e  can f i l l  wi th  compressed gas and so does = c o n t r i b u t e  

t o  buoyancy. The e f f e c t i v e  dens i ty  of 3A z e o l i t e s  would, t he re fo re ,  be 1.35 

g/cc while t h e  e f f e c t i v e  dens i ty ,  f o r  purposes of c a l c u l a t i n g  buoyancy, f o r  5A 

z e o l i t e s  would be 2.2 g/cc.  

Thus, while  a s i n g l e  p e l l e t  of 

To sumnarize, while  t h e  apparent d e n s i t i e s  of p e l l e t s  of 3A, SA,  and 13X 

z e o l i t e s  are 1.33 g/cc,  1.33 g/cc,  and 1.29 g/cc,  r e spec t ive ly ,  t he  e f f e c t i v e  

dens i ty ,  on t h e o r e t i c a l  grounds, f o r  use i n  c a l c u l a t i n g  buoyancy should be 

1.33 g/cc,  2.2 g/cc,  and 2.44 g/cc,  r e spec t ive ly .  Unfortunately,  a t tempts  t o  

use these  t h e o r e t i c a l  d e n s i t i e s  t o  i n t e r p r e t  a c t u a l  experimental  d a t a  produce 

less than s a t i s f a c t o r y  r e s u l t s .  

An empir ica l  s o l u t i o n  t o  t h i s  problem w a s  a r r ived  a t  by c a r e f u l  examina- 

t i o n  of the  adsorp t ion  d a t a  f o r  13X and 5A z e o l i t e  samples. These z e o l i t e s  

have 1arg.e c r i t i ca l  diameters  which are completely access ib l e  t o  methane. 

Therefore,  a s t ra ight forward  c a l c u l a t i o n  of buoyancy is possible .  The adsorp- 

t i o n  isotherm f o r  13X z e o l i t e  e x h i b i t s  very l i t t l e  change over t he  incremental  

p r e s s u r e  change between 3.2 MPa (450 ps ig)  and 3.6 MF'a (500 ps ig) .  The r a w  

microbalance da ta ,  however, does show an apprec iab le  change i n  weight due t o  

changes i n  buoyancy. I f  we assume t h a t  the o the r  z e o l i t e  samples behave i n  

t h e  same manner, t h a t  is ,  t h a t  t he  weight change observed between 450 ps ig  and 

500 ps ig  is due almost e n t i r e l y  t o  changes i n  buoyancy, we can then use t h e  
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raw microbalance data as a direct measurement of the buoyancy and eliminate 
the need for a calculated value. 

The relative errors introduced by this assumption are cumulative. In 
other words, a 1% relative error in estimating the buoyancy between 450 psig 
and 500 psig becomes a 10% relative error over the entire range of pressures 
measured (0 to 500 psig). As a consequence, we cannot have a high degree of 
confidence in th’e adsorption isotherms for 3A, 4A, AW-300, and AW-400. 
However, since the performance of these materials falls far short of the 
performance of the 5A zeolites, they are effectively eliminated from 
consideration as an advanced concept for methane storage anyway and no harm is 
done. 

Individual adsorption isotherms for the seven zeolite samples are pro- 
vided in Appendix. B. Table 13 is a summary of their performance. 

Table 13. ADSORPTION CHARACTERISTICS OF ZEOLITE SAMPLES 

Packing 
Sample Density Methane Adsorbed in grams/gram 
NO d c c  2.2 MPa 3.6 MPa 

Zl 
22 
23 

24 
25 
26 

27 

C. 

0.77 
0.76 
0.74 

0.66 
0.72 
0.95 
0.79 

Bench-Scale Storage Experiments 

0 -024 

0.037 

0.047 
0 -048 
0.048 
0.038 
0.030 

0.025 

0.039 
0.049 
0.050 
0.051 
0.039 
0.031 

Methane adsorption is only one of several important parameters contrib- 
uting to the performance of an adsorption storage system. 

internal pore volume are others. To assess the performance of adsorbents 
under realistic conditions, samples of adsorbent were packed into a stainless 

steel cylinder having an internal volume of 75 cm3 and the cylinder evacuated 
with a vacuum pump. 
loading balance accurate to fO.O1 gram. 
3.6 MPa (500 psig) with dry methane. 

Packing density and 

The evacuated cylinder and sample were weighed on a top 
The cylinder was then pressurized to 

The heat of adsorption was dissipated by 
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blowing a i r  a t  25OC over t h e  cy l inde r  f o r  two hours while  maintaining a con- 

s t a n t  p re s su re  with a high pressure r egu la to r .  The cy l inde r  w a s  then reweighed. 

This  provided a d i r e c t  measure of t h e  t o t a l  mass of methane s to red  a t  3.6 MPa 

and includes both t h a t  po r t ion  s to red  by adsorpt ion and t h a t  po r t ion  s t o r e d  by 

compression i n  t h e  void spaces. The mass (g)  of methane s to red  per u n i t  

volume (L) is he re  def ined as methane s t o r a g e  capaci ty .  The dependence of 

methane s to rage  capaci ty  upon packing dens i ty  and s p e c i f i c  adsorpt ion is  

i l l u s t r a t e d  f o r  s e l e c t e d  samples i n  Figure 4 .  The s o l i d  l i n e s  represent  a 

locus of p o i n t s  determined by the the  t h e o r e t i c a l  r e l a t i o n s h i p  between packing 

dens i ty  and methane s t o r a g e  f o r  carbons having s p e c i f i c  adsorpt ions of 0.165, 

0.115, 0.100, and 0.085 g/g a t  3.6 MPa (35 a t m  o r  500 p s i g )  a t  25°C. Actual 

experimentally determined values  f o r  carbon C6, C10, C15, C15C, and C17 are 

a l s o  p l o t t e d  i n  Figure 4. I n  Reference 7 ,  Amos Golovoy r e p o r t s  success i n  

inc reas ing  t h e  packing dens i ty  of 9LXC by crushing the  p e l l e t s .  The s t o r a g e  

capac i ty  a t  3.6 MF'a and packing dens i ty  reported by Golovoy are p l o t t e d  i n  

Figure 7 as Po in t  R1. The same procedure w a s  appl ied by IGT t o  i nc rease  t h e  

apparent d e n s i t y  of Sample C15. A 50 gram sample of t h i s  carbon w a s  placed i n  

a hydraul ic  p re s s  and crushed a t  a pressure of 1000 p s i  ( 7 . 3  MPa). The broken 

p e l l e t s  were then placed i n  a mortar and fragmented f u r t h e r  with a p e s t l e  

using a rocking motion r a t h e r  than a gr inding motion. 

number of f i n e  p a r t i c l e s  w i th  a minimum amount of powder. This carbon w a s  

then d r i ed  a t  14OOC i n  a vacuum oven and the  methane adsorpt ion isotherm w a s  

determined. Although the  crushed carbon sample now exh ib i t ed  a packing 

dens i ty  of 0.58 g/cc,  t h e  adsorpt ion isotherm f o r  t h i s  carbon w a s  i d e n t i c a l  t o  

t h a t  of t he  o r i g i n a l  i n d i c a t i n g  t h a t  t he  adsorpt ion c h a r a c t e r i s t i c s  were not 

changed by t h e  crushing process.  This carbon sample w a s  designated as C15C 

and is a l s o  p l o t t e d  i n  Figure 4 .  

This produced a l a r g e  

B a r t o n s  &.8 have determined t h e  methane adsorpt ion isotherm a t  25°C 

f o r  a carbon which w a s  not included i n  t h i s  study, Amoco GX-32. This carbon 

has t h e  h ighes t  s u r f a c e  area of any known carbon, 2500 m2/g (Nitrogen BET) and 

the  h ighes t  s p e c i f i c  adsorpt ion f o r  methane of any carbon reported i n  t h e  

l i t e r a t u r e , , O . l 6 5  g/g a t  3.6 MPa and 25OC. 

the  s to rage  capaci ty  of Amoco GX-32 and w a s  placed on the  b a s i s  of information 

provided by Barton. 

a l s o  might be increased by crushing. 

Point  R2 i n  Figure 4 r e p r e s e n t s  

It is  poss ib l e  t h a t  t h e  packing dens i ty  of t h i s  material 
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Figure 4 .  RELATIONSHIP OF SPECIFIC ADSORPTION AND PACKING DENSITY 
OP CARBON TO METHANE STORAGE CAPACITY AT 3.6 MPa PRESSURE 
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The amount of methane s to red  by compression alone i n  an empty cy l inder  a t  

14 MPa (2000 psig)  would be about 108 grams/liter. 

A s  can be seen from Figure 4,  t h e  s to rage  capac i ty  of Sample C15C is  

super ior  t o  any thus f a r  reported i n  the  l i t e r a t u r e  and is 70% t h a t  of com- 

press ion  s to rage  at 14 ma. I f ,  by some chemical means, t he  s p e c i f i c  adsorp- 

t i o n  of C15C could be enhanced from 0.100 t o  0.120 g/cc,  a t  3.6 MPa t h e  

s to rage  capac i ty  would a l s o  increase  by 20%. Such a goal  is not unreasonable 

but no method of a t t a i n i n g  it has been i d e n t i f i e d  as ye t .  

Caution should be used, however, when comparing an adsorpt ion system with 

a compression s to rage  system on the  b a s i s  of methane s torage  capac i ty  alone. 

The amount o f '  n a t u r a l  gas s to red  by both systems is  always g r e a t e r  than t h e  

amount de l ive red  but because of t h e  shape of the  adsorp t ion  isotherm, t h i s  

la t ter  quan t i ty  is not  a l i n e a r  func t ion  of pressure  f o r  t he  adsorpt ion system 

as it  is  f o r  simple compression s torage .  The most p r a c t i c a l  method of de te r -  

mining t h e  amount of methane t h a t  can be de l ivered  by an adsorpt ion system is  

t o  cons t ruc t  a bench-scale apparatus .  This was accomplished by connecting t h e  

75 c m  s t a i n l e s s  s t ee l  cy l inde r  f i l l e d  with t h e  appropr ia te  adsorbent t o  a gas 

manifold and a w e t  tes t  meter. To determine a practical  de l ive ry  capac i ty  f o r  

t h e  var ious  adsorbents ,  t h e  cy l inder  descr ibed above w a s  p ressur ized  with 

methane and the  methane w a s  then slowly bled through a w e t  test meter over a 

2-hour period. 

from 3.6 MPa (500 ps ig)  t o  101.4 KF'a (0 ps ig)  w a s  determined d i r e c t l y .  An air  

stream a t  25OC w a s  d i r e c t e d  at  the  cy l inder  t o  maintain temperature during 

desorpt ion.  Table 14 l ists  the  quan t i ty  of methane de l ivered  i n  grams p e r  

l i t e r  and t h e  percentage of t he  t o t a l  adsorbed which t h i s  represents  f o r  16 of 

the  carbon samples and t w o  of the  bes t  z e o l i t e  samples. 

3 

The quan t i ty  of methane de l ivered  by the  system i n  cycl ing 

D. Discussion of Resul t s  

A s  can be seen from Table 14 i n  t h e  previous sec t ion ,  Carbon Sample C15C 

e x h i b i t s  t h e  bes t  performance, most methane de l ive red ,  of a l l  samples t e s t ed .  

However, t h i s  sample does not have t h e  h ighes t  s p e c i f i c  adsorpt ion f o r  methane 

nor the  h ighes t  micropore volume. It does have one of the  h ighes t  spec i f ic  

su r face  areas and the  h ighes t  packing dens i ty  of a l l  carbons t e s t ed .  These 

two parameters then become the  most d e s i r a b l e  c h a r a c t e r i s t i c s  of a good sor-  

bent material f o r  an adsorp t ion  s to rage  system. 
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Unfortunately,  t he  methods by which the  s p e c i f i c  su r face  area of an 

a c t i v a t e d  carbon can be increased,  by the  c r e a t i o n  of micropores through 

c a t a l y t i c  ox ida t ion  o r  chemical leaching,  a l s o  decrease the  packing dens i ty .  

Table 14. METHANE DELIVERED BY ADSORBENT SYSTEMS 
CYCLED FROM 3.6 MPa TO 101.4 KPa 

Thus 

Sample 
Designation 

c3 
c4 
c5 
C6 
c7 
C8 
c9 
c10 
c11 
c12 
C13 
C14 
C15 
C15C 
C16 
C17 
23 
24 

f o r  example 

G r a m s  of Methane per  Fract ion of T o t a l  
L i t e r  of Storage i n  Storage 

34.8 
45.2 
36.5 
41.4 
54.8 
31.8 
51.4 
49.2 
51.8 
48.4 
40.1 
39.4 
56.3 
62.0 
55.9 
51.0 
44.1 
44.1 

91.6X 
86.8% 
86.1% 
92.8% 
86.8% 
85.1% 
86.7% 
84.1% 
84 -9% 
86.9% 
93.3% 
94.3% 
84 .O% 
83.8% 
85 -5% 
89.4% 
84.7% 
87.6% 

Amoco GX-32 with a high s p e c i f i c  s u r f a c e  a rea  a l s o  has a 

low packing dens i ty .  Therefore,  improvements i n  s t o r a g e  capaci ty  of carbons 

l i k e  C15C by inc reas ing  su r face  area w i l l  l i k e l y  reduce packing dens i ty .  

On t h e  o t h e r  hand, none of t h e  carbons used i n  t h i s  study have been 

optimized f o r  methane adsorpt ion.  The chemical na tu re  of t hese  a c t i v a t e d  

carbons, s u r f a c e  groups, o r  chemical a d d i t i v e s ,  were optimized f o r  t h e  

adsorpt ion of a c t i v e  gases  such as HCN o r  H2S. 

a b i l i t y  t o  adsorb a chemical spec ie s  can be determined by d iv id ing  i ts  
specific adsorpt ion i n  g/g a t  a f ixed  p res su re  by t h e  s p e c i f i c  su r face  area i n  

c m  /g and mult iplying by Avogadro's number over t h e  molecular weight of t h e  

adsorbed species .  The r e s u l t i n g  q u a n t i t y  i s  the  coverage i n  terms of 

A crude index of a carbon's 

2 

molecules adsorbed per cm2 of s u r f a c e  area. 

c a l c u l a t i o n  f o r  the coverage of C17 a t  3.6 MPa. 

For example, Equation 7 is  a 
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0.115 g/ 6.023 x lo1-' molecules/mole = 3.38 1014 molecules/cm 2 4 R 2  16 grams/mole 1280 x 10 cm /g 

Table 15 lists the methane coverage for representative carbon samples. 
It can be seen that the coverage for C15 is about average. If the methane 
coverage of C15 can be increased to equal that of C17 or C8, without altering 
the surface area or the packing density, a 35% improvement in methane adsorp- 
tion and a 25% improvement in methane storage capacity would result. 

A comparison of the methane coverage for pure carbons having high inter- 

nal porosity with substantial pore volume contributed by pores of less than 
200 A radius (C3, C6, and C8) with those carbons having virtually no pores 
smaller than 2008 radius (C10, C15, and C16) indicate no significant differ- 
ence. Thus, micropore structure appears to contribute no additional benefits 
to methane adsorption. It should be noted that Carbons C5, C9, and C11 
through C14 cannot be included in this evaluation because of their substantial 
inorganic content, see Table 2. 

A comparison of methane coverage versus pH for the carbon samples indi- 
cates a slight positive relationship with the most basic carbons having a high 
methane coverage. Figure 5 plots methane coverage from Table 15 versus pH 
values from Table 2. However, here too, no significance can be assigned to 
this observation since the pH contribution of the inorganic materials present 
in each sample was not determined. 

1. 

2. 

3 .  

4. 

E. Conclusions 

The following conclusions can be drawn from the Task 1.1 results. 

Activated carbons proved superior to zeolites in this program, both on a 
grams/gram and grams/liter basis. 

The best performance, defined here as methane delivered per liter of 
storage, was turned 4" by North American Carbon G210 crushed to a packing 
density of 0.58 g/cm 

High surface area and high packing density are desirable attributes for 
candidate sorbent materials. 

Results indicate that there is room for improvement in the performance of 
even the best carbon evaluated. 
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5. There is hope that an adsorption storage system operating at a maximum 
pressure of 3.6 MPa can be developed having a storage capacity equal to 
compression storage at 14 MPa (2000 psig). 

Table 15. METHANE COVERAGE FOR CARBON SAMPLES AT 
3.6 MPa OF METHANE 

Sample 
Designation 

c3 
c4 
c5 
C6 
c7 
C8 
c9 
c10 
c11 
c12 
C13 
C14 
C15 
C16 
C17 

14 
Coverage in 

Molecules/cm x 10 2 

2.59 
2.96 
2 -85 
1.99 
2 -72 
3.53 
2.78 
3.12 
2.82 
2.70 
2 -03 
1.78 
2.62 
2.83 
3.38 

Task 1.2 Modeling Effort 

The purpose of this modeling effort is to develop a simplified model 
suitable for predicting weight, capacity, and vehicle range as well as esti- 
mate the change in each parameter required to obtain a methane storage cap- 
ability for adsorption systems consistent with the range, weight, and fuel 

tank capacity of conventional (gasoline fueled) and high-pressure CNG 
vehicles. Although a rigorous analytical model was beyond the scope of this 
work, the following results are sufficient to provide a semi-quantitative 
comparison of compression storage and adsorption storage. 

A. Calculations to Determine the Weight of a Storage Tank 

Considerable developmental work has been performed to reduce the weight 
of D.O.T. approved high-pressure gas cylinders for vehicular applications. 
Aluminum-fiberglass composite cylinders having an internal volume of 3 8 ~ ,  an 
operating pressure of 21 MPa (3000 psig), a burst pressure of 52 MPa, and a 
mass of only 28 Kg (62 lbs) are currently available from commercial suppliers. 
However, in order to accurately assess the performance of a low pressure 
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adsorption storage system, it would be necessary to determine the weight of a 
storage tank optimized for operation at a maximum pressure of 3.6 MPa (500 
psig). Unfortunately, at the present time, there is little interest in weight 
reduction programs for cylinders operating in this pressure range. As a con- 
sequence, the 28 Kg cylinder was used as a storage container for both the high 
pressure model and the adsorption model systems. 

B. Model Automobile 

A state-of-the-art compact class automobile was chosen having the speci- . 
fications listed in Table 16. 
powered Ford Tempo GL 5-speed. This size automobile was chosen for a model 
since its performance characteristics are expected to be more sensitive to 
changes in weight and fuel composition than heavier vehicles. 

These are the specifications for a gasoline 

Table 16. MQDEL AUTOMOBILE 

Inertial Weight 
Frontal Area 
'Drag Coefficient 
Road Horsepower at 50 'mph 
Aerodynamic Drag at 50 mph 
Engine Displacement 
Compression Ratio 
Power ( S A E  Net) 
Trunk Space 
EPA Highway 
EPA City 

2750 lbg (1250 K ) 
20.6 ft (1.91 M ) 
0.36 
11.5 hp 
6.0 hp 
140 CU. in. (2301 cc) 
9.0: 1 
89 bh at 4700 rpm 

5 

13 ft 3 (0.37 M3) 

41 mPg 
27 mPg 

Road horsepower requirements and miles per gallon on gasoline were calcu- 
lated for a constant speed of 50 mph (80 km/hr) as a function of vehicle 

weight using the following assumptions: 

1. The EPA highway mpg approximates the fuel economy at a constant 50 mph 
(80 kmlhr) 

2. Aerodynamic drag is unchanged by changes in vehicle weight 

3.  Fuel consumption is related to road horsepower and engine efficiency 
requirements. 

The power required to maintain a constant velocity (P,) is the sum of the 

power required to overcome rolling resistance (PRO) including drive train 
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l o s s e s  and accessory requirements p lus  the  power required t o  overcome aero- 

dynamic drag (PL)* 

- 
pw - 

PRO, i n  t u r n ,  is p ropor t iona l  t o  the 

i e n t  of r o l l i n g  r e s i s t a n c e  (C,), and 

Reference 9 supp l i e s  a l l  of the  

'RO 'L ( 8 )  

product of t he  v e l o c i t y  (V> , the coef f ic- 

t h e  vehic le  weight (W) . 

necessary information required t o  calcu- 

l a te  changes i n  road horsepower requirements as a func t ion  of changes i n  
weight f o r  our model automobile. Table 17 lists t h e  r e s u l t s  of t hese  calcula-  

t ions .  

Table  17. ROAD HORSEPOWER REQUIREMENTS AND MPG AS A FUNCTION OF 
VEHICLE WEIGHT AT A CONSTANT 50 MPH 

Vehicle 
MPG - Weight, l b s  Road HP 

2000 
2500 
3000 
3500 

10.4 
11.5 
12.6 
13.7 

47 
41 
37 
34 

The expected EPA c i t y  mpg was a l s o  ca l cu la t ed  as a func t ion  of veh ic l e  

weight. The approach taken here  i s  similar t o  t h a t  used by Kukkonen i n  

Reference 10. Table 18 l is ts  the  r e s u l t s .  

Table 18. EPA CITY MPG AS A FUNCTION OF VEHICLE WEIGHT 

Vehicle 
Weight, l b s  

2000 
2500 
3000 
3500 

C. Fuel  Consumption f o r  Dual-Fuel Mode 

MPG 

33.7 
27 
22.5 
19.3 

Before the  ope ra t iona l  range of our model veh ic l e  can be ca l cu la t ed ,  i t  

is  necessary t o  determine the  f u e l  consumption expected during n a t u r a l  gas  
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operation. 
run on natural gas with only minor modifications, it has become standard 

practice in the U.S.A. and elsewhere to perform dual-fuel conversions. Such 
conversions allow the driver to select the fuel desired and to change from one 
fuel to the other at will. Such conversions do not take advantage of all of 
the positive attributes of natural gas as an SI engine fuel but, since such 

conversions are common, the decision was made to include a dual-fuel mode in 
our model. 

Since a gasoline fueled spark ignition (SI) engine can be made to 

Work carried out by the University of British Columbia allows some quan- 
tification of the fuel consumption for gasoline engines converted to natural 
gas fuels.'' This work indicates that the overall operating efficiency of a 
vehicle equipped with a natural gas-fueled converted gasoline engine is, at 
best, 12% better on natural gas than the same engine on gasoline, provided 
modifications are made to the timing curve to advance the spark when operating 
on natural gas. A more detailed discussion of engine efficiency in the dual- 
fuel mode can be found in Part 1 of Appendix C. 

D. Dedicated Engine Node 

Natural gas exhibits many excellent qualities as an internal combustion 
(IC) spark-ignited engine fuel. Chief among these qualities is the high 
octane number of 130 RON. However, to take advantage of this high octane 
characteristic, it is necessary to use high compression ratios which are not 

compatible with gasoline operation. 

An engine designed to make optimum use of natural gas as a fuel is 
classed as a dedicated engine. Such an engine could be expected to be 25% 

more efficient on natural gas than the same displacement size engine running 

on gasoline. 
engine can be found in Part 2 of Appendix C. 

A more detailed discussion of the efficiency of a dedicated 

E. Energy Density of Pressurized Storage 

In addition to knowing the efficiency and, therefore, the range per unit 
mass of fuel, it is also necessary to know the total amount of fuel stored on 
board. Because the term "pipeline quality" natural gas does not carry with it 
a definitive gas composition, it is necessary, at this point, to define terms. 

For purposes of this model, natural gas will have an average molecular weight 
of 16.0 and a lower heating value of 11,800 Kcal/kg (21,250 Btu/lb). By 
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placing the average molecular weight equal to that of methane, we can apply, 
without further adjustment, the data gathered for methane adsorption on car- 

bons. This leads, however, to underestimating vehicle range by a factor equal 
to the ratio of the actual average molecular weight of a specific gas sample 

to that of methane. 

The amounts of natural gas (methane) that can be stored per liter of 
volume at various pressures is summarized in Table 19. 

Table 19. RELATIONSHIP BETWEEN PRESSURE AND METHANE STORAGE 
CAPACITY AT 23OC FOR AN EMPTY CYLINDER 

Pressure Enerpy Density, 
p i g  atmospheres M Pa Grams/Liter 

500 35 3.6 
1000 69 7 .O 
1500 103 10.4 
2000 137 13.9 
2500 17 1 17.3 
3000 205 20.8 

24 
50 
79 

108 
135 
160 

We can now utilize this table to determine the fuel on-board given the pres- 
sure and volume of the containment vessels. There is one additional correc- 

tion that must be applied to an actual system. State-of-the-art dual-fuel 
systems cycle between a maximum tank pressure of 16.7 to 20.8 MPUa and a 
minimum tank pressure of 0.3 to 0.4 MPa depending on manufacturer. Thus, of 
the 108 grams/liter stored at 13.9 MPa, only 106 g/R is delivered by cycling 

the system from 13.9 PPa to 0.3 MPa. However, for purposes of calculation, 

the higher value of 108 g/R will be used to offset somewhat the error induced 

by using 16 as the average molecular weight of natural gas. 

F. On-Board Storage 

The calculation of the "fuel on-board'' for an adsorption system is more 
complex than for an empty cylinder. Gas can be stored both by adsorption on 
the substrate and by compression in void spaces. 

methane adsorbed is not a linear function of pressure but follows a Langmuir- 
type isotherm. 
view, actual experimental values for the best carbon identified in Task 1.1 

Furthermore, the quantity of 

Rather than address these problems from a theoretical point of 
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were used. 

g/cc w a s  loaded i n t o  a cy l inde r  and cycled between 3.6 MPa and 170 kPa (500 

p s i g  and 10 p s i g  r e s p e c t i v e l y ) .  About 58 grams of methane were de l ive red  per 

l i t e r  of carbon during the  discharge cycle .  It is premature t o  conclude t h a t  

t h e  58 g / %  of methane de l ive red  by t h e  bes t  carbon r ep resen t s  a maximum value 

f o r  absorbent systems i n  general .  

North American Carbon G-210 crushed t o  a packing dens i ty  of 0.58 

G .  Addit ional  Weight of Gas Storage Hardware 

I n  o rde r  t o  determine t h e  performance and range on n a t u r a l  gas of a 

veh ic l e  ope ra t ing  i n  t h e  dual-fuel mode, i t  is  necessary t o  know t h e  addi- 

t i o n a l  weight added t o  t h e  v e h i c l e  by t h e  gas s to rage  system. Table 20 

summarizes t h e  a d d i t i o n a l  weight of one, two, and t h r e e  tank s to rage  systems 

based on 38- l i t e r ,  i n t e r n a l  volume, aluminum-fiberglass composite cyl inders .  

The 28-Kg high p res su re  cy l inde r  previously descr ibed is  used t o  c a l c u l a t e  t h e  

weight of t h e  va r ious  s to rage  systems. The packing d e n s i t i e s  of t h e  carbon 

adsorbents are set  a t  0.58 g/cc,  which r ep resen t s  t h e  most dense carbon 

evaluated i n  t h i s  program. 

hardware would occupy about one-third of t he  a v a i l a b l e  t runk space i n  our 

model veh ic l e .  

A s i n g l e  38% tank with manifold and bracket ing 

Table 20. APPROXIMATE MASS OF STORAGE SYSTEMS I N  Kg 

Pressurized Storage 

Fuel 
Tanks 
Brackets 
Conversion K i t s  

6 12 18 
28 56 84 
10 20 30 
25 25 25 - 

T o t a l  69 113 157 

AdsorptiQn Storage 

Fuel 
Tanks 
Brackets 
Manif o ld  
Carbon 

1 Tank 2 Tanks 3 Tanks 

3 5 7 
28 56 84 
15 30 45 
30 30 30 
22 44 66 

To ta l  98 165 23 2 
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H. Vehicle Range and Fuel Ef f ic iency  

Having determined the  weight and s to rage  capac i ty  of t he  var ious  s torage  

systems and the  r e l a t i v e  f u e l  e f f i c i e n c i e s  of t he  SI  engine opera t ing  on gaso- 

l i n e  and on n a t u r a l  gas i n  both dual-fuel and dedicated modes, i t  is now pos- 

s i b l e  t o  combine these  r e l a t i o n s h i p s  with the  r e l a t i o n s h i p  between t o t a l  

veh ic l e  weight and veh ic l e  f u e l  economy t o  c a l c u l a t e  both gasol ine  equiva len t  

mpg and range on n a t u r a l  gas  f o r  t he  var ious s torage  opt ions.  Table 21 com- 

pares  f u e l  e f f i c i e n c y  on gasol ine  and t h e  est imated range on n a t u r a l  gas f o r  

the  var ious s to rage  opt ions  f o r  a model veh ic l e  opera t ing  i n  the  dual-fuel 

mode on t h e  EPA-city cycle. Table 22 i s  a similar comparison f o r  t h e  constant  

speed approach. Resul t s  i n  Tables 21 and 22 assume that pressur ized  s to rage  

system cyc les  between 20.8 MPa (3000 ps ig)  and 0.3 MPa (25 ps ig)  while  adsorp- 

t i o n  s to rage  systems cycle  between 3.6 MPa (500 ps ig)  and 0.2 MPa (10 ps ig) .  

Range on n a t u r a l  gas is based on the r e s u l t s  of the s tudy discussed i n  

Appendix. C. 

The pro jec ted  range of t he  model veh ic l e  equipped with a, dedicated engine 

would be about 10% longer than those l i s t e d  f o r  var ious  s torage  opt ions  i n  

Tables 2 1  and 22. 

I. Discussion of Resul t s  

Fuel Economy: The r e s u l t s  of our model i n d i c a t e  t h a t  a s i g n i f i c a n t  

+pena l ty  i s  paid,  up t o  15%, i n  t h e  form of a l o s s  i n  f u e l  economy on the  EPA 

c i t y  cyc le  when a dual-fuel  c a p a b i l i t y  is added t o  t h e  base automobile. On 

the  o ther  hand, t he re  is l i t t l e  a d d i t i o n a l  performance l o s s  with adsorp t ion  

s to rage  over t h a t  experienced wi th  pressur ized  s torage .  This  is an important 

r e s u l t  s i n c e  one of t he  pas t  ob jec t ions  t o  adsorpt ion s to rage  has been t h e  

added weight of t he  sorbent  bed. This  has added s ign i f i cance  since our model 

calls f o r  'heavier  bracke ts  and manifolding hardware wi th  adsorpt ion s to rage  

than with pressur ized  s torage .  I n  o ther  words, t h e r e  is no s i g n i f i c a n t  

d i f f e rence  between pressur ized  s torage  and adsorpt ion s torage  i n  t h e  f u e l  

economy l o s s  experienced i n  the  dual-fuel mode. 

Range: The range of a veh ic l e  is d i r e c t l y  r e l a t e d  t o  the  f u e l  s to red  on- 

board and it is genera l ly  accepted i n  a l t e r n a t i v e l y  fue led  veh ic l e  circles 

t h a t  f o r  an a l t e r n a t i v e l y  fue led  vehic le ,  regard less  of the  propuls ion system, 
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Table 21. ESTIMATED FUEL ECONOMY AND RANGE ON THE EPA CITY CYCLE 
FOR VEHICLE OPERATING I N  A DUAL-FUEL MODE 

Range on Gasoline Fuel 
Storage System Economy* Natural  Gas Only** 

Gasoline Only 11.5 (27) 

Pressurized Storage (20.8 MPa) 

1 Tank 
2 Tanks 
3 Tanks 

Adsorption Storage (3.6 MPa) 

1 Tank 
2 Tanks 
3 Tanks 

10.9 (25.4) 
10.5 (24.6) 
10.1 (23.7) 

10.7 (25.1) 
10.2 (23.9) 
9.7 (22.8) 

95 
182 
262 

32 
63 
93 

* Kilometers per l i t e r  (miles per ga l lon ) .  
** Kilometers (miles) .  
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Table 22. ESTIMATED mTEL ECONOMY AND RANGE AT A CONSTANT SPEED 
OF 80 Km/hr IN THE DUAL FUEL MODE 

Storage System 

Gasoline Only e. 

Pressurized Storage (20.8 MPa) 

1 Tank 
2 Tanks 
3 Tanks 

Adsorption Storage (3.6 MPa) 

1 Tank 
2 Tanks 
3 Tanks 

Gasoline Fuel Range on 
Economy* Natural Gas** 

* Kilometers per liter (miles per gallon). 
** Kilometers (miles). 
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to make significant market penetration it must have a range of at least 100 

miles between refuelings on the EPA city cycle. Although this is less criti- 
cal for a dual-fuel vehicle, it is absolutely necessary for a dedicated 
vehicle. 

As can be seen in Table 21, our model predicts that this can be achieved 
with a pressuriged storage system operating at 20.8 MPa (3000 psig) equipped 
with two 382 storage tanks. On the other hand, the state-of-the-art adsorp- 
tion system with three 382 tanks can only manage 58 miles (93 km). 
possible that future research and development can boost the storage capacity 
of sorbent beds based on carbon to the point where a 100 mile range on the EPA 

city cycle is feasible with three tanks. Also, it should be recognized that 
this model assumes that storage is limited to the space available in the auto- 
mobile trunk and assumes cylindrical shaped containers, the maximum possible 
being three 382 tanks. If, however, storage volumes in excess of 1802 (about 

five 382 tanks) can be made available either by locating tanks in other unused 
spaces, by redesigning the automobile, or by using more efficient geometrical 
shapes, a state-of-the-art adsorption system could achieve a range in excess 
of 100 miles on the EPA city cycle at the expense of an additional weight 
increase without further improvements in the sorbent beds. It is unlikely, 
however, that an adsorption storage system will ever be designed with the 

energy density of a pressurized storage system charged to 20.8 MPa. 

It is 
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TASK 2. LITERATURE SURVEY AND ADVANCED STORAGE MEDIUM EVALUATION 

The o b j e c t i v e  of t h i s  t a s k  w a s  t o  survey t h e  a v a i l a b l e  l i t e r a t u r e  and 

i d e n t i f y  materials and concepts with t h e  p o t e n t i a l  t o  s t o r e  methane a t  low 

pressures .  The survey concentrated on the concepts of c l a t h r a t i o n ,  encapsu- 

l a t i o n ,  and d i s so lu t ion .  A 33-page eva lua t ion  of c l a t h r a t e  s to rage  concepts, 

complete wi th  its own bibl iography,  is included as Appendix D. A 27-page 

d i scuss ion  of methane s t o r a g e  by d i s s o l u t i o n  i s  included as Appendix E. 

summary of t h e  f ind ings  is provided below. 

A 

A. C l a t h r a t i o n  of Methane 

The t e r m  c l a t h r a t e  w a s  o r i g i n a l l y  defined as a compound " i n  which two o r  

more molecular components are as soc ia t ed  without ordinary chemical union but 

through complete enclosure of one set of molecules i n  a s u i t a b l e  s t r u c t u r e  

formed by another.':! 

w i th in  spaces formed by t h e  c r y s t a l  s t r u c t u r e  of t he  host. The phenomenon is 

dependeqt pr imari ly  upon the  r e l a t i v e  s i z e  of t he  ho le s  i n  the  hos t  c r y s t a l  

s t r u c t u r e  and s i z e  of t he  guest  molecules. 

Thus, t he  term c l a t h r a t e  implies  guest  molecules caged 

Although t h e r e  is considerable  work i n  progress toward developing t h e  

know-how f o r  t a i l o r i n g  new c l a t h r a t e  h o s t s  f o r  s p e c i f i c  guest  molecules, most 

of t he  work is o r i en ted  toward b i o l o g i c a l  and c a t a l y t i c  a p p l i c a t i o n s  such as 

enzymes and i o n i c  species .  P r a c t i c a l l y  no r e fe rences  have been found f o r  

t a i l o r i n g  the  c l a t h r a t e  hos t  molecules f o r  s m a l l  and r e l a t i v e l y  i n e r t  mole- 

cu le s  such as methane o r  t he  i n e r t  gases;  thus,  tailor-making hos t  molecules 

f o r  c l a t h r a t i n g  methane s t i l l  r e q u i r e s  a l a r g e l y  empir ical  approach i n  devel- 

opment. Nonetheless, t h e r e  are a few precepts  a v a i l a b l e  t o  guide such a 

development: 

0 C l a t h r a t e  formulat ion depends on t h e  a b i l i t y  of t he  hos t  molecules t o  
form a c r y s t a l  h a b i t  which has c a v i t i e s  l a r g e  enough t o  accommodate the 
s p e c i f i e d  guest  molecules. 

0 The c r y s t a l  h a b i t  formed i n  the  presence of t h e  guest  molecule is usual ly  
d i f f e r e n t  from the  normal crystal  s t r u c t u r e  found i n  the  absence of t h e  
guest .  

o The primary p r e r e q u i s i t e  f o r  t he  hos t  i s  hydrogen-bonding o r  o the r  com- 
plex forming a b i l i t y  while a secondary p r e r e q u i s i t e  is a molecular geom- 
e t r y  which w i l l  c r y s t a l l i z e  i n  t h e  presence of t he  guest  t o  a s t r u c t u r e  
with c a v i t i e s  s i z e d  t o  accommodate the guest  
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Stability is of major importance since it controls not only whether the . 

methane can be contained at reasonable pressures under ambient conditions but 
also the conditions under which the methane can be released. 
methane, for example, is not stable enough since it requires a pressure greater 

than 28 MPa to exist under ambient temperature conditions. 
the hydroquinone/methane clathrate is too stable. 
stored at ambient temperature and pressure, it requires an elevated temperature 
or the introduction of a solvent to release the methane. Obviously, a com- 

promise is in order so that the clathrate will be stable at ambient tempera- 
ture, at a reasonable pressure of 1.5 to 3.6 MPa, so that methane release can 

be achieved and controlled by pressure reduction. 

The hydrate of 

On the other hand, 
Thus, although it can be 

The parameters controlling stability include: 

0 Hydrogen bonding power of the groups through which the crystallization 
occurs. 

0 Geometry and symmetry of the host molecule as it affects the structure of 
the crystal habit formed. 

The capacity of a clathrate for methane, on the other hand, depends on 

two factors: 

0 How many host molecules are required to provide one guest "cage" (i.e., 
the unit cell) 

0 Molecular weight of the host molecules. 

The structure of the unit cell and, therefore, the number of host molecules 
per guest molecule is dependent in a very complex way on various crystallo- 

graphic factors and is beyond prediction at this time except perhaps for cer- 
tain "hexamer" clathrates,which tend to give a 3 : l  host to guest ratio. Thus, 
molecular weight may be the factor of greatest importance in determining 
capacity and is suitable for preliminary evaluation. 

It may be possible that some higher molecular weight molecules with com- 

plex symmetries form clathrate structures in which the host/guest ratio is 
significantly less than the 3: l  found for the hexamer types. Others may form 
structures with cavities sufficiently large to accommodate two or more methane 
molecules as in the case of the urea tunnel adducts. In the latter case, dif- 
fusion would be the primary barrier to decomposition and the system would 
function in a manner analogous to that of absorption in a zeolite. Most of 
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the clathration entities forming larger cavities (and there are a lot of them 
including Dianin's compound, the Werner complexes, deoxycholic acid, urea and 

thiourea cyclodextrin, etc.) have been evaluated only with larger guest mole- 
cules (usually the solvent used) at atmospheric pressure and not with perma- 
nent gases such as methane under elevated pressures. For example, urea adduc- 
tion of the homologous n-paraffin series has been extended downward to include 

propane and butane which are stable at atmospheric pressure only at subzero 
temperatures. However, it is possible that adduction could be extended to 
include methane and ethane as well at ambient temperatures and elevated pres- 
sures. 

It is apparent from the above discussion that any future work toward the 
development of clathrate systems for on-board storage of natural gas will be 
highly empirical in approach, although guided by the precepts outlined above. 
Two as yet unreported possibilities axe a urea-methane adduct and an 
acetamide-methane clathrate. 

1. .Urea/Methane Adduct 

The methane/urea adduct, if it exists, probably will show'a mole ratio of 
about 1:3 or a weight ratio of about 16:180 = 0.089 g CHq/g of urea. This is 

of the same magnitude as that for activated carbons but is not as good as the 
methane hydrate (0.155 g/g H20). I 

2. Acetamide/Methane Clathrate 

f! 
Acetamide CH3CCNH2 MW = 59 MP = 82OC 

Methane clathrates of acetamide have never been demonstrated but are good 

candidates because of good hydrogen-bonding ability of the amide group and low 
molecular weight. If a host/guest ratio of 3:l is achieved, the weight ratio 
would be 0.09 g CH4 per g acetamide. The possible methods of preparation in- 

clude crystallization from a solvent or condensation from a vapor. 

Conclusions: 

As reported above, the highest mass ratio of guest to host is found in 
methane hydrates, 0.155 g/g. However, methane hydrate is not stable under 
ambient temperature conditions at pressures below 28 tPa. The best mass ratio 
that can be expected from other proposed but as yet unidentified methane clath- 

rates is about 0.09 g/g. This is slightly less than the mass ratio already 
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available with state of the art carbon based adsorption systems. Also, since 
a clathrate-based storage system is likely to be relatively more difficult to 

cycle than an adsorption-based storage system, further work with clathration- 
based systems for on-board storage is not recommended. However, clathration- 

based systems may ultimately prove useful for stationary applications where 
weight and volume are not critical. Therefore, recommendations for future 
research with clathrates is presented at the conclusion of Appendix D, despite 
its lack of utility as an on-board storage concept. 

B. Dissolution of Methane 

13 

on regular solutions, i.e., solutions "in which orienting and chemical effects 
are absent and in which the distribution and orientations are random..." In 
other words, methane behaves in most solvents, including the rare gases, as 
non-polar molecules subject primarily to van der Waals dispersion forces. The 

primary parameters controlling solubility in regular solution theory are the 
molal volume and the Hildebrand solubility parameter relative to that of 
methane. The solubility parameter or cohesive energy density is defined as: 

In general, the data conforms well to the classical views of Hildebrand 

where : 

AH; = Heat of vaporization at solution temperature 

V1 = Molal volume of Component 1. 

Siace the solubility parameter of methane is at the lower end of the 
scale (S = <6), the best solvents for methane are the perfluorocarbons, the 
silicones, and the lower aliphatic hydrocarbons such as propane. The best 
solvent for methane so far found is propane, in which methane is soluble to 

the extdnt of 0.15 mole fraction or 0.063 lb CH4/lb solvent. 
a lower capacity on a lb/lb basis than can be expected from adsorption on 

activated carbon at this pressure. 

-r , 
However, this is 

On a mole fract,ion basis, the solubility of methane in octamethyl cyclo- 
tetrasiloxane (0.32) and in perfluoro q-heptane (0.28) is greater than the 

propane but on a gravimetric basis the solubilities are much lower (0.025 and 
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0.016, respectively) due to the high molecular weights of these solvents. 
Nevertheless, it is possible that lower molecular weight perfluorocarbons and 

silicones could exhibit acceptable methane solubilities on a mass ratio basis. 
However, information regarding methane solubility in these solvents is not 
available in the literature. 

I n  the aliphatic hydrocarbon series, the solubility of methane decreases 

with increasing molecular weight as the result of the solubility parameter in- 
creasing with increasing molecular weight. This trend of decreasing methane 
solubility with increasing molecular weight continues up to about C6 (n- 

hexane). 
basis increases with increasing molecular weight to 0.32 for C30 (squalane) . 
Unfortunately, the solvent molecular weight increases more rapidly than solu- 
bility so that the solubility on a gravimetric basis continues to decrease 
with increasing molecular weight. These results are based primarily upon data 
for straight chain hydrocarbons, squalane being the exception with 6 methyl 
groups on a straight chain of 24 carbons. However, the solubility of methane 

in isobutane (2-methyl propane), 0.061 g/g, and in neo pentane (2,2-dimethyl 
propane), 0.057 g/g, suggest that the decrease in methane solubility on a 
gravimetric basis with increasing molecular weight may be less severe for 
highly branched paraffin hydrocarbons. Unfortunately, data on the solubility 
of methane in highly branched high molecular weight paraffins is not available. 

Above c6, however, the solubility of methane on a mole fraction 

The solubilities of methane in aliphatic alcohols appear to be greater, 
at the same solubility parameter value, than for other solvents having no 

hydroxyl groups. This suggests that hydrogen bonding may contribute in some 
as yet unidentified manner to enhancing methane solubility. This further 
suggests that it may be possible to enhance the adsorptive capacity of solid 

adsorbents by providing a multiplicity of hydroxyl groups on the surface. 

The solubility data for the lower paraffin hydrocarbons (e.g., propane) 
actually represent the concentration of methane in the liquid phase of a mix- 

ture in equilibrium with a vapor phase containing both methane and solvent 

vapor. 

MPa total pressure is corrected to 3.5 MPa partial pressure of methane, the 
solubility would increase from 0.063 g/g to 0.11 g/g but the total system 

pressure would also increase. Likewise, the solubility of methane in liquid 
ethane at 25OC and a methane partial pressure of 3.6 MPa is 0.35 g/g, however, 

If the equilibrium concentration of methane in propane at 25°C and 3.6 
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system pressures exceeding 7 MPa would be required. If we could tie down 
ethane or  propane as ethyl or propyl groups and still maintain their solvent 
capacity for methane, gravimetric capacities similar to those of the best 
adsorbent systems might be achieved. 

Conclusions 

No high molecular weight solvent has been identified which can dissolve 

enough methane to be competitive with adsorption storage. On the other hand, 
no method has been identified to prevent low molecular weight highly vola'tile 
solvents such as propane, in which methane is highly soluble, from vaporizing 
along with the methane during system discharge. Although this is not consid- 
ered a serious problem with propane, it does present a significant environmen- 
tal hazard when low molecular weight fluorocarbons and silicones are considered. 
The possibility of tying low molecular weight solvents to polymer backbones, 
however, is at least within the realm of speculation, and warrants some future 

consideration. 
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TASK 3. FUTURE RESEARCH AND DEVELOPMENT RECONMENDATIONS 

Theore t i ca l  and experimental  r e s u l t s  obtained i n  t h i s  program c l e a r l y  

i n d i c a t e  t h e  p o t e n t i a l  of low-pressure n a t u r a l  gas s to rage  systems (based on 

carbons as t h e  s to rage  medium) f o r  veh icu la r  app l i ca t ions .  

show, by adsorp t ion  on carbons commercially a v a i l a b l e  today, i t  i s  poss ib l e  t o  

s t o r e  a t  500 p s i  approximately 70% of the  volume of methane t h a t  can be s to red  

a t  2000 p s i  i n  a compressed (no adsorbent) n a t u r a l  gas system of the  same 

volume, and about 45% of that  s to red  a t  3000 ps i .  

A s  the r e s u l t s  

The cos t  of compressors capable of compressing n a t u r a l  gas t o  pressures  

g r e a t e r  than 2500 p s i  con t r ibu te s  a s i g n i f i c a n t  amount t o  the t o t a l  cos t  of 

n a t u r a l  gas-fueled veh ic l e  f l e e t s .  Consequently, lowering the  compression 

requirements could s i g n i f i c a n t l y  impact t h e  t o t a l  system cos t  and make n a t u r a l  

gas  a more a t t r a c t i v e  t r a n s p o r t a t i o n  fue l .  

The p o t e n t i a l  of low-pressure s to rage  systems has been demonstrated, al-  

though t h e  range of veh ic l e s  opera t ing  on adsorp t ion  systems is less than f o r  

high pressure  systems. Consequently, t h e r e  is need f o r  a d d i t i o n a l  research ,  

development, and opt imiza t ion  before  these  low-pressure systems can be imple- 

mented. Following is a l i s t  ou t l in ing  the areas t h a t  must be resolved.  

There is a need t o  cont inue research  with carbons t o  improve t h e i r  s t o r -  
age capaci ty .  The l i k e l y  approach t o  be taken is  the  manipulation of t h e  
s u r f a c e  chemistry of t h e  carbon. A s  w a s  reported i n  Task I, c e r t a i n  of 
t he  carbon samples gave a higher  degree of coverage of methane than 
o t h e r s ,  most notably those wi th  high pH values  on the  acid-base test. An 
understanding of t he  s p e c i f i c  su r face  groups which enhance methane 
adsorp t ion  can lead  t o  a method of increas ing  methane s torage  capac i ty  by 
inc reas ing  the  populat ion of t he  d e s i r a b l e  su r face  group. 

During t h e  adsorp t ion  of methane on carbon, a s i g n i f i c a n t  amount of hea t  
is generated.  Although some work has been performed wi th  sys tems us ing  
5 l i t e r  s to rage  cy l inde r s ,  no one has addressed t h e  problem of hea t  d i s -  
s i p a t i o n  i n  l a r g e r  cy l inders .  

Go10voy7 has  observed t h a t  hydrocarbons l a r g e r  than Cg are s t rong ly  
adsorbed on high su r face  area carbons during the  charging cyc le  t o  t h e  
po in t  t h a t  they do not  desorb on discharge.  It is necessary t h a t  t he  
impac t  of these  materials upon cyc l ing  e f f i c i e n c y  be determined and 
several methods f o r  removing them from t h e  f u e l  p r i o r  t o  loading be 
evaluated.  

It is expected t h a t  t h e  use of low pressure adsorp t ion  systems in place 
of high p r e s s m e  s to rage  systems w i l l  reduce t h e  c a p i t a l  investment re- 
qui red  f o r  a r e f u e l i n g  s t a t i o n  but may inc rease  the  cos t  of t he  vehicu lar  
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storage system. It is necessary to conduct an economic evaluation to 
quantify tKe expected savings which will be realized by reduced com- 
pressor costs so that an upper limit can be placed on the cost of the 
vehicular adsorption storage system. 

To date, most adsorption system experiments have been conducted at about 
25OC. However, real world methane storage systems may be exposed to 
environmental extremes of from -30' to +6OoC with daily temperatures 
swings of as much as f20". 
both performance and safety of daily and annual temperature variations. 

It is necessary to determine the impact upon 

Vibrational settling of adsorbent may present a problem in actual vehic- 
ular systems. This problem, if it exists, needs to be identified.early 
enough for corrective measures to be taken prior to actual full-scale 
demonstration tests. 

The above issues need to be resolved in order that enlightened full-scale 
demonstration tests can be undertaken. 
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APPENDIX 6. 

SUPPORTING CALCULATIONS FOR TASK 1,2 WORK 

I. Estimation of the Fuel Economy of a Gasoline Engine Converted to Run on 
Natural Gas in a Dual Fuel Mode 

Assumptions 

o Model vehicle achieves 17 km/g (40 mpg) or 22-9 km/kg (6.54 miles/lb) on 
gasoline 

o Lower heating value of gasoline is 10.5 kcal/gram (18,900 Btu/lb) 1 

o Lower heating value of natural gas is 11.56 kcal/gram (20,800 Btu/lb)' 

Work carried out by the University of British Columbia (UBC) has provided 
some quantification of the fuel economies for vehicles operating in a dual 
fuel mode on gasoline or natural gas.2 
12.5% increase in operating efficiencies for vehicles operating on natural gas 

over the same vehicle operating on gasoline on the basis of BTU input. This 
translates into a 23% increase in fuel economy on a mass to mass basis. In 
other words, the UBC results suggest that our model vehicle which achieves 
22.9 km per Kg of gasoline will travel 28 km per Kg of natural gas. 

The UBC study documented an average 

The proposed explanations for such an improvement in fuel economy were a 
higher thermal efficiency for the engine operating cycle due t o  more complete 
combustion of the natural gas-air mixture and a leaner stoichiometric ratio in 
the natural gas mode. However, the performance of the older carbureted engines 

used in the UBC study are not representative of the high efficiency, electronic 
fuel injected engine used in the model vehicle chosen for this study. Conse- 
quently, most of the 12% efficiency improvements, on a Btu basis, would not be 

achieved with a state-of-the-art engine. Not because of a decrease in perfor- 

mance on natural gas, but rather a result of improved performance and fuel 
economy on gasoline. 

For the purposes of the modeling work in Task 1.2, it was assumed that 
1 kilogram of natural gas delivered about 12% greater range than 1 kilogram of 
gasoline, 10% as a consequence of the higher energy content of natural gas and 
2% as the result of improved engine efficiency. 

To conduct a more meaningful analysis of the potential efficiency improve- 
ment or vehicle range (beyond that performed here) would require the following: 

Modeling of natural gas-air and gasoline-air cycles for selected design 
specification of IC engines and numerical simulation of the performance 
within a defined range of operating conditions 

c-1 



e Selection, analytical modeling, and simulation of a reference driving 
cycle in terms of determined natural gas-air and gasoline-air cycle 
performance 

o Comparison analysis of driving cycle performance for both natural gas and 
gas fuels carried out in terms of BSFC or distance unit of fuel mass. 

IT Estimation of the Fuel Economy of a Dedicated Natural Gas Engine 

In general, natural gas exhibits excellent characteristics for use as an 
internal combustion spark-ignited engine fuel. The clearly identifiable advan- 

tages and disadvantages are as follows: 

Advantages 

1. High caloric value (lower heating value is 10% higher than gasoline) 

2. High octane number (130 RON) 

3 .  Good i nitability of natural gas-air mixture allows low equivalence 5 ratios 

4. Simple oxidation reactions leading to comp.lete combustion 

5. Effective carburetion due to gaseous phase. 

There are also certain negative natural gas characteristics: 

Disadvantages 

1. Relatively low laminar flame speed within quiescent combustion chamber 

2.  Lack of process of vaporization both during mixing and admission elimin- 
ates the cooling effect and accordingly decreases cylinder volumetric 
efficiency. 

Advantages 1, 4 ,  and 5 can be made use of in a careful conversion of a 
gasoline engine. The first disadvantage can also be partially corrected by 

advancing the ignition and also to varying degrees by the type of engine that 
is selected for conversion. 

More complete utilization of advantageous characteristics of natural gas 

as an IC engine fuel as well as effective alleviation of the negative charac- 
teristics will require a dedicated natural gas-engine design. The most evi- 
dent modification should involve: 

o Increase of compression ratio (up to 14 to 1) in order to maximize 
thermal efficiency of cycle by extensive utilization of high octane 
number of natural gas 
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e Application of "fast burn" combustion system in order to alleviate 
disadvantage of slow flame propagation of natural gas-air mixture and 
enhance cycle thermal efficiency by bringing cycle conditions closer to 
those characterizing a constant-volume cycle 

e Application of some sort of supercharging to alleviate the deterioration 
of volumetric efficiency caused by the lack of cooling upon carburetion. 

Figure C-1 defines the functional relation between theoretical thermal 
efficiency of an internal combustion-spark ignition engine and design compres- 
sion ratio developed for gasoline-air mixtures with different equivalency 
ratios Fro4 
a "dedicated"'natura1 gas engine can be represented in this figure by the 
transition from Point A to Point B. 

compression ratio rG = 9 typical for a modern gasoline engine operating on 
slightly over-stoichiometric mixture with FR = 1.1 which seems to be approp- 
riate for assuring the satisfactory combustion process in a gasoline engine 

The process of transition from a converted natural gas engine t o  

Point A represents an engine with a 

converted to natural gas fuel. Although lean methane-air mixtures have good 
ignitability, their poor flame propagation characteristics seem to'prevent 

effective burning in a conventional gasoline mixture combustion chamber. 
Satisfactory fast combustion of natural gas mixtures in such conditions will 
call for an ignition advance and for a rather enriched equivalency ratio. A 
dedicated design can be provided with a compression ratio rNG = 11.5 and a 
combustion system intentionally promoting faster combustion, therefore capable 
of accepting leaner mixtures. Point B can be then quite realistically extrap- 
olated as to be located on curve FR = 0.8 and abscissa rNG = 11.5. 
trapolation suggests a possible corresponding thermal efficiency gain An' = 8%. 
An' can still be increased by supercharging allowing for approximately a 5% 
additional increase in theoretical thermal efficiency of an IC engine. The 
total efficiency increase for a dedicated natural gas IC engine will then be 
approximately 13% over a natural gas converted version, or if the gasoline 
engine is taken as the baseline, the potential efficiency improv'ement of a 
natural gas dedicated design would be about 25%. 

This ex- 

To a first approximation, the ranges of the model vehicle described in 
Task 1.2 and listed in Tables 21 and 22 for natural gas operation can be 
extended by 13% if a dedicated engine is substituted for a converted gasoline 

engine. 
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APPENDIX D. 

EVALUATION OF CLATHRATION COMPOUNDS AS A MEANS OF 
STORING NATURAL GAS 

1-16 CLATHRATES 

1 Background 

I n t e r e s t  i n  i nc lus ion  compounds i n  recent  years  has been found i n  two 

major areas. I n  the  f i r s t  and most recent ,  the  binding or  complexing of gues t  

spec ie s  by unimolecular hos t s ,  i n  s o l u t i o n ,  has received much a t t e n t i o n ,  par- 

t i c u l a r l y  i n  the  f i e l d s  of biology and c a t a l y s i s .  The second relates t o  t h e  

study of c r y s t a l l i n e  inc lus ion  compounds o r  c l a t h r a t e s  which may be subclas- 

s i f i e d  as: 

0 The cage c l a t h r a t e s  i n  which the  gues t  molecules are imprisoned i n  d is -  
crete closed c a v i t i e s  or  cages, i n  the host  c r y s t a l  and inc lude  the  hydro- 
quinone and ice c l a t h r a t e s  

0 The channel type i n  which the  guest  spec ies  are accommodated i n  continu- 
ous channels i n  the  c r y s t a l  such as the  urea  and th iourea  adducts  

0 The l a y e r  t y p e - i n  which the  guest  spec ie s  are s i t u a t e d  between l aye r s  
(e.g., wi th  g raph i t e  and c e r t a i n  c l ays ) .  

I n  addi t ion ,  molecular s i eves  and, i n  p a r t i c u l a r ,  t h e  z e o l i t e s  are sometimes 

c l a s s i f i e d  *as c l a t h r a t e  o r  i nc lus ion  hos t s  s i n c e  they possess d i s c r e t e  cages 

and channels,  and inc lus ion  depends on t h e  molecular dimensions of t h e  guest  

molecules r e l a t i v e  t o  t h a t  of t he  channels and cages of the  hos t .  17,18 From 

t h e  point  of view of methane s torage ,  t h e  c l a t h r a t e  type of i nc lus ion  is  of 

greatest i n t e r e s t .  However, t he re  may be a l a rge  overlap i n  concept and prin- 

c i p l e  between inc lus ion  i n  the  s o l u t i o n s  and i n  c l a t h r a t e s .  Furthermore, 

i nc lus ion  i n  s o l u t i o n s  may provide a means of s i g n i f i c a n t l y  enhancing methane 

s torage.  

The t e r m  c l a t h r a t e  w a s  o r i g i n a l l y  def ined,  on t h e  bas i s  of x-ray d i f f r ac -  

t i o n  s t r u c t u r a l  ana lys i s  of a number of such e n t i t i e s  by Powell and a s s o c i a t e s ,  

as a compound "in which two or  more molecular components are assoc ia ted  with- 

out ordinary chemical union but through complete enclosure of one set of 

molecules i n  a s u i t a b l e  s t r u c t u r e  formed by another.  **15 

c l a t h r a t e s  are noteworthy: 

Two aspects of t he  

0 The c r y s t a l l i n e  l a t t i ce  s t r u c t u r e  of t he  host  is usua l ly  not i n  i t s  nor- 
m a l  c r y s t a l l i n e  mode (a-form) but i n  a form (usua l ly  r e fe r r ed  t o  as the  
0-form) which is usua l ly  less s t a b l e  i n  the  absence of guest  molecules 
than t h e  r f  orm. 
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0 The composition over which the clathrate is stable with respect to decom- 
position into guest and normal host can vary over a large range. 

Thus, clathrates are not stoichiometric compounds but ones in which the re- 
strictions on which molecules can become guests and the minimum fraction of 

the total number of cavities which must be filled foro stability are largely 
determined by geometric considerations. 15 

Although the literature concerning clathrate inclusion compounds extends 
back to the early 1800's, most of the activity in the field has occurred since 
the late 1940's and early 1950's after a basic understanding of the phenomenon 

was developed by H. M. Powell and associates. Since then, the work in the 
field has been prodigious. 
is certainly not complete since this includes only 293 references on hydrates 

Thus, Bhatnager (1970)l lists 1339 references which 

compared to 1458 references cited by Davidson? Nonetheless, Bhatnager's bib- 
liography yields an interesting breakdown of the types of clathrating agents 

of greatest interest: 

0 Urea .and thiourea adducts 

o Hydrates 

8 Phenolics including hydroquinone, 
Dianin's compounds, and various phenols 

e Cyclodextrins (starches) 

e Werner complexes 

9 Miscellaneous including phosphonitrile, 
steroids, adamantane, cholesterol, 
dinitrophenol, hexamethylisocyanide 
chloride, and cycloveratril 

0 Reviews 

610 refs. 

293 

116 

63 

134 

41 

82 

ing a ents exhibi It is interesting to note that many of these clathra a 
strong hydrogen bonding propensity (e.g., amides, water, phenols, and cyclo- 
dextrin) which is undoubtedly involved in the binding of the crystals of the 

host molecules. In the case of the Werner Complexes and other inorganic co- 
ordination systems, the binding energy for the host crystal certainly involves 
ionic as well as ion to ligand attractions. 

Since 1967, the work in the field has begun to shift toward developing 

the know-how to synthesize new host structures, a priori, on the basis of 
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molecular structure rather than on a purely empirical basis. One area of con- 
siderable interest in the biological field is the synthesis of water soluble 
host molecules, which are organic molecules that contain cavities of dimen- 
sions capable of accommodating simple ions and molecules in which the binding 
is provided by hydrogen bonding, ion pairing, metal ion to ligand attractions, 
acid-base attractions, and van der Waals forces. Hosts may contain cavities 
which result from reorganization of the molecule during complexation with a 
guest molecule or rigid cavities which exist prior to complexation 
(cavitands). 19,20 

This work is an outgrowth of the studies of the structure and properties 

of the cyclodextrins, which are naturally occurring cyclic oligomers made up 
of 6-8 glucoside units bound head-to-tail and which enclose cavities of 6 ,  8, 
or 108 diameter, depending on the number of units in the oligomer. The ether 
oxygens and hydrogen atoms are oriented inwardly and hydroxyls are oriented 
outwardly. Thus, guest molecules of a range of sizes from methane to much 

larger organic species can be clathrated. Similar behavior was first achieved 
with the synthesis of cyclic polyethers containing six (-CH2-CH2-0-) units 

with inwardly oriented ether groups. l9 Furthermore, this approach has now 

been extended to include macrocycle compounds made up of substituted aromatic 
units, for which the size and shape of the cavities as well as the nature of 

the inwardly oriented binding groups has been varied. 21 

Independently, MacNicol and associates 14,21-23 have developed a synthesis 

strategy based on mimicking the "hexa-host" behavior of several phenolic clath- 

rating agents such as Dianin's compound and hydroquinone, in which clathration 
involves the formation of a hexagonal ring of hydrogen-bonded oxygen atoms 
from six phenolic hydroxyl groups: 
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Each group of s ix  s u b s t i t u t e d  phenol molecules is assoc ia ted  wi th  two cavi- 

t ies ,  one above the  hexagonal hydrogen bonded planes and one below. 

They were then ab le  t o  demonstrate t h a t  t he  c l a t h r a t i o n  a b i l i t y  of such 

hexagonal s t r u c t u r e s  could be simulated using t h e  permanent s t r u c t u r e  of cer- 

t a i n  hexa-subst i tuted benzene r i n g  compounds. Thus, two independent approaches. 

s t a r t i n g  wi th  empir ica l  observat ions of two r a d i c a l l y  d i f f e r e n t  types of c l a th -  

rates have converged on a c y c l i c  model f o r  t h e  syn thes i s  of new clathrate hos ts .  

However, the  gues t  molecules bound by both types of c l a t h r a t e  hos t s  so f a r  

have been r e l a t i v e l y  larger than methane. 

Thermodynamics of C la th ra t e  S t a b i l i t y  

21,22 

16 

The thermodynamics of c l a t h r a t e  s t a b i l i t i e s  has been reviewed by Child 

(1964)15 and w i l l  not be repeated here.  

of i n t e r e s t  i n  guiding f u r t h e r  syn thes i s  attempts.  H e  po in ts  out t h a t  i n  many 

respects c l a t h r a t e s  are s imilar  t o  equi l ibr ium s o l u t i o n s  i n  t h a t :  

However, the  g i s t  of h i s  a n a l y s i s  i s  

0 Solu te  molecules are placed i n  c a v i t i e s  wi th in  t h e  so lvent  

o The energy of i n t e r a c t i o n  between hos t  and guest  i s  normally s m a l l  and 
t h e  entropy term is  similar i n  magnitude t o  t h e  entropy of vapor iza t ion  
of a s o l u t e  from a s o l u t i o n  which obeys Raoul t ' s  l a w  

0 The gues t  may be s a i d  t o  obey Henry's l a w  i n  the  sense t h a t  guest-guest  
i n t e r a c t i o n s  are n e g l i g i b l e  compared t o  the  guest-host i n t e r a c t i o n s .  

On t h i s  bas i s ,  Child suggests  t h a t  t h e  entropy t e r m  con t r ibu t ion  t o  sta- 

b i l i t y  i s  r e l a t i v e l y  small and t h a t  the  s t a b i l i t y  depends pr imar i ly  on the  

o v e r a l l  hea t  of formation of the  c l a t h r a t e  and, t he re fo re ,  on the  magnitude of 

i n t e r a c t i o n  between hos t  molecules, and between the  gues t  and the  surrounding 

molecules of t h e  hos t  lattice. 

number of c l a t h r a t e s  formed from hydroquinol and water have been shown t o  be 

about 0.8-2.2 of the  va lue  of two t i m e s  t h e  heat  of vapor iza t ion  AH of t he  

guest  molecules,  i.e., AHp = 0.8 t o  2.2 (2AHvap). 

Thus, the hea t s  of formation (AHp) f o r  a 

VaP 

An explana t ion  f o r  t hese  high r a t i o s  w a s  given i n  terms of:  

0 The removal of a guest  molecule from a c l a t h r a t e  leaves an empty cav i ty  
(with l i t t l e  i n t e r a c t i o n  between hos t  molecules ac ross  the  ho le ) ,  whereas 
the removal of a molecule of guest  from a l i q u i d  leaves no ho le  

0 The i n t e r a c t i o n s  between guest  molecules and the  w a l l  of t he  cage may be 
g r e a t e r  than between t h e  two guest  molecules i n  t h e  l i q u i d  s ta te  
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o The coord ina t ion  number of t he  guest  molecule may be l a r g e r  i n  t h e  cav i ty  
than i n  the  l i q u i d  state.  Thus, t he  vapor iza t ion  of t he  pure guest  may 
be v i sua l i zed  as a two-step process  i n  which t h e  vapor iza t ion  s t e p  leaving  
empty holes  i n  the remaining l i q u i d  has  an enthalpy increase  of 2Mvap, 
and t h e  subsequent co l l apse  of t he  holes  an enthalpy decrease of -AHvap 

I n  the  case of c l a t h r a t e s ,  on the  o the r  hand, f o r  a ne t  change of AH 
t h e  vapor iza t ion  en tha  py change of 2 AH is  counterbalanced not  by t h e  
co l l apse  of t he  holes  remaining, but by tge enthalpy change i n  convert ing 
t h e  f3 s t r u c t u r e  t o  t h e  a-form which i s  o f t en  much less than AH Fur- 
thermore, the  hea t  of vaporizing the  guest  molecule from the  cIg&ate 
s t r u c t u r e  MY a c t u a l l y  be g r e a t e r  than the  hea t  of vapor iza t ion  of t he  
pure l i q u i d  because of t he  i n t e r a c t i o n  between guest  and host  by an 
amount depending on t h e  energy of i n t e r a c t i o n  (which depends on the  chem- 
ical  na ture  of t he  gues t  and hos t )  and the  coordinat ion number of i n t e r -  
a c t i o n  (which w i l l  depend on the  s i z e  and shape of t he  cav i ty  r e l a t i v e  t o  
t h a t  of CH4). 

yap' 
V P  

S ince  methane is  non-polar i n  na ture ,  t h e  host-guest  i n t e r a c t i o n s  
are l i k e l y  t o  be l imi t ed  t o  van der  Waals forces .  Thus, t he  most impor- 
t a n t  host-guest  i n t e r a c t i o n  f a c t o r  a f f e c t i n g  the  s t a b i l i t y  of i t s  c la th-  
rates w i l l  probably be the  diameter of the  c a v i t i e s  formed by the  hos t  
molecules. 
r a t i o s  f o r  i t s  c l a t h r a t e  with hydroquinone (1 .8)  and wi th  water (0.89 are 
approximately' i nve r se ly  propor t iona l  t o  t h e  cav i ty  diameters of t he  two, 
4.2 and 5.2 & respec t ive ly .  However, the  i n t e r a c t i o n s  between methane 
and i ts  host  might be enhanced somewhat i f  t he  hos t  c a v i t i e s  were l ined  
with groups (such as hydroxyl or  amino groups) having a high hydrogen 
bonding power as i n  t h e  case of t he  apparent ly  enhanced s o l u b i l i t y  of 
methane i n  a lcohol  so lven t s  a t  a given s o l u b i l i t y  parameter. I n  t h e  case 
of c l a t h r a t e s  wi th  hydrogen bonding power, one would not have t o  be con- 
cerned wi th  the  s o l u b i l i t y  parameter of t he  host .  

This is cons i s t en t  with the  f a c t  t h a t  measured AHp/2AHv 

3,25,26 1.0 Natura l  Gas Hydrates 

Perhaps the  most f a m i l i a r  example of c l a t h r a t i o n  t o  the  gas indus t ry  are 

the  hydrates  of methane and o ther  n a t u r a l  gas hydrocarbons. 

became of i n t e r e s t  t o  t h e  U. S .  gas indus t ry  around 1934 when i t  w a s  noted 

t h a t  plugging of n a t u r a l  gas t ransmission l i n e s  was no t  due t o  f r eez ing  of 

water a t  O"F, but t o  formation of hydrates  of hydrocarbon cons t i t uen t s  of 

n a t u r a l  gas a t  temperatures as high as 1 5 0 ' ~ ? . ~ ~  

t h a t  gas hydrates  e x i s t  i n  two d i s t i n c t  but d i f f e r e n t  c r y s t a l  s t r u c t u r e s  

depending on t h e  s i z e  of t he  guest  molecule: 

These hydrates  

It w a s  subsequently found 

0 S t r u c t u r e  I hydrates  cons i s t  of s m a l l  hydrat ing (gues t )  molecules, f o r  
example, A r ,  K r ,  X e ,  CH4, C H 
have 46 water (hos t )  molecufei 'ani  8 c a v i t i e s  (voids ,  cages) where guest  
(hydrat ing)  molecules may be located.  
f i l l e d )  would be - 

H S, and CH3C1. The cubic  u n i t  cells  

The i d e a l  formula ( a l l  c a v i t i e s  
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(So lu te )  "46/8 H20 o r  (Solute)  "5.75 H20 

a S t r u c t u r e  I1 hydrates  c o n s i s t  of l a r g e r  hydrat ing (guest)  molecules; f o r  
example, C3H8, CHC13, and C2H C1 .  
( h o s t )  molecules and 8 voids 5 c a v i t i e s ,  cages) f o r  guest  molecules. The 
i d e a l  formula ( a l l  c a v i t i e s  f i l l e d )  would be - 

The cubic u n i t  cells  have 136 water 

(Solute) '136/8 H20 o r  ( S o l u t e ) * l 7  H 2 0  

The above s toichiometry i n d i c a t e s  t h a t  methane could be s to red  as the  

hydrate t o  the  e x t e n t  of 0.155 g of methane/g water. 

Unfortunately,  methane hydrate  i s  not s u f f i c i e n t l y  s t a b l e  f o r  purposes of 

s to rage  a t  ambient condi t ions.  This  is shown by Figure D-1 which i n d i c a t e s  

t h a t  methane hydrate  i s  most s t a b l e  above 4000 ps ig  a t  70°F (27.7 W a  a t  2 loC) ,  

or  above 20,000 ps ig  a t  100°F27 (138 MPa a t  38OC). 

a t  a given temperature i s  reduced considerably f o r  t he  mixed hydrates  of 

methane wi th  e i t h e r  ethane (Figure D-2)28 or  propane (Figure D-3).29 

t h e  o v e r a l l  vapor p re s su re  of the hydrate  at  a given temperature can be 

reduced by blending methane with higher hydrocarbons. However, t h e  e f f e c t  

with ethane and propane is  not s u f f i c i e n t  t o  make t h e  hydrate  u s e f u l  f o r  

s to rage  under t r u l y  ambient condi t ions.  Furthermore, t he  hydrates of hydro- 

carbons above C5 are not known. 

The equi l ibr ium p res su re  

Thus, 

Dissolved salts such as sodium ch lo r ide  s i g n i f i c a n t l y  decrease t h e  tem- 
30 pe ra tu re  a t  which t h e  hydrate  is s t a b l e  at  a given p res su re  (Figure D-4), 

presumably because they i n t e r f e r e  with t h e  c r y s t a l l i z a t i o n  ( f r e e z i n g  po in t  

lowering). 

Thus, it would appear t h a t  t he  mechanical s t r e n g t h  of t he  c r y s t a l l i n e  

water host  i n  these  hydrates  is not s u f f i c i e n t  t o  con ta in  the  vapor p re s su re  

of methane at ambient temperatures. Furthermore, it does not appear t h a t  t h e  

vapor p re s su re  t o  be contained can be lowered s u f f i c i e n t l y  by blending t h e  

methane with higher  hydrocarbons or  o the r  lower vapor pressure"molecu1es . 
wonders then i f  the s t r e n g t h  of t he  host ice c r y s t a l  s t r u c t u r e  can be increased 

i n  some o t h e r  way. 

might have t h i s  e f f e c t .  However, t he  d a t a  on the  e f f e c t  of sodium c h l o r i d e  

above suggests  t h a t  t h e  presence of MgC12 would a l s o  be de l e t e r ious .  

t i c u l a r ,  i no rgan ic  c a t i o n s  tend t o  complex with water (i .e. ,  form chemical 

hydrates)  through the  oxygen atom, thus i n t e r f e r i n g  wi th  the  hydrogen bonding 

between hydrogen and oxygen and, t hus ,  with ice formation, On the  o the r  hand, 

One 

It w a s  suggested t h a t  hydrate  forming salts such as MgC12 

I n  par- 
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Figure D-1. PRESSURE-TEMPERATURE (P, T) CONDITIONS FOR HYDRATE 
FORMATION USING METHANE GAS AND PURE WATER 
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i t  might be poss ib l e  t o  f i n d  a s u i t a b l e  inorganic  salt which, i n  t h e  process 

of c r y s t a l l i z i n g  as a hydrate ,  w i l l  c l a t h r a t e  s m a l l  molecules such as methane. 

However, such a system would not be an e x t r a p o l a t i o n  from the  gas hydrate  o r  

any o the r  known system but r a t h e r  a new and unexplored area. 

A t r a d i t i o n a l  method of i nc reas ing  t h e  s t r e n g t h  of materials, of course, 

is by reinforcement of t he  material with f i b e r  (composite materials). A com- 

mon example is g l a s s  f i b e r  r e in fo rced  epoxy r e s ins .  Perhaps then, methane 

hydrate formed i n  the  presence of a matr ix  of c o l l o i d i a l  s i l i ca  which g e l s  

i n t o  a highly cross-linked f ib rous  mass could show enhanced vapor pressure- 

temperature r e l a t i o n s h i p s .  However, t h i s  i s  obviously a specu la t ive  sugges- 

t i o n  a t  t he  moment. 

Urea and Thiourea Inc lus ion  Compounds 1 ,4 ,8  , l o ,  11 

Considerable l i t e r a t u r e  e x i s t s  on the  p repa ra t ion  and p r o p e r t i e s  of u rea  

and th iou rea  c l a t h r a t e s ,  pr imari ly  because of t h e i r  use i n  t h e  sepa ra t ion  of 

isomers o r  o the r  mixtures on the b a s i s  of d i f f e rence  i n  molecular s i z e  and 

shape. III p a r t i c u l a r ,  s t r a i g h t  chain p a r a f f i n  hydrocarbons (and f a t t y  ac ids )  

have been separated commerclLally on the b a s i s  of t he  f a c t  t h a t  , the  urea c l a th -  

rate s t r u c t u r e  w i l l  accommodate n-paraff in  chains but not branched chai% 

hydrocarbons. Thus, a number of e x c e l l e n t  reviews are ava i l ab le .  

The urea and th iou rea  adducts are examples of t h e  tunnel  c l a t h r a t e s  

formed by c r y s t a l l i z a t i o n  through hydrogen bonding of t he  hos t  molecules i n  

t h e  form of an extended h e l i x  or  tunnel  around the  gues t  molecule. The tunnel  

diameter is of the order  of 0.52 nm f o r  urea and about 0.61 nm f o r  thiourea.  

The adducts are usua l ly  prepared b a s i c a l l y  by c r y s t a l l i z a t i o n  from a s u i t -  

a b l e  so lven t  (e.g., water o r  methanol) i n  the  presence of t he  guest  molecule. 

n-hexane appears t o  be t h e  s h o r t e s t  s t r a i g h t  chain hydrocarbon t h a t  w i l l  form 

a urea adduct a t  ambient condi t ions.  However, urea adducts of propane and 

butane have been prepared by Schl ief  by lowering the  temperature t o  s l i g h t l y  

below the b o i l i n g  po in t  of t he  hydrocarbon with methanol as solvent.31 It is 

poss ib l e  t h a t  t he  urea adduct of methane may a c t u a l l y  e x i s t  and be s t a b l e  

under ambient temperatures at  e levated pressures .  

Figure D-5 from Schl ief3 '  suggests  t h a t  i f  i t  does e x i s t ,  t he  methane/ 

urea adduct would have a composition approximating 1 CH4/3 ureas  corresponding 
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t o  a weight r a t i o  of 0.089 g/g which is of t he  same order  of magnitude as t h a t  

f o r  adsorp t ion  on a c t i v a t e d  carbon a t  3.6 MPa. 

1,2,4,5,12,13 2.0 Phenol ic  C la th ra t e s  

Of considerable  i n t e r e s t  is t h e  c l a t h r a t i o n  behavior of phenols i n  genera l ,  

and hydroquinone i n  p a r t i c u l a r .  

such as methane (or  02, N2, C2H2, CH30H, H C l ,  SO2, A r ,  K r ,  Xe), hydroquinone 

c r y s t a l l i z e s  i n  the  metastable  "B" modif icat ion i n  a r a t i o  of 1 cav i ty  t o  

every 3 hydroquinone molecules. This  c r y s t a l  modif icat ion,  however, i s  s t a b l e  

only i f  a c e r t a i n  f r a c t i o n  of the  c a v i t i e s  are f i l l e d  wi th  guest  molecules 

which are n e i t h e r  too  small (He) nor too l a rge  (CC14). The cavi ty  has a diam- 

eter of 3.958, when occupied by small molecules comparable t o  3.88 f o r  methane. 

However, larger molecules can be accommodated by d i s t o r t i o n  of the  c a v i t i e s .  

Although t h e  c r y s t a l  s t r u c t u r e  is held toge ther  by hydrogen bonding i n  a man- 

ne r  similar t o  ice, t h e  s t a b i l i t y  of t he  hydroquinone c l a t h r a t e  i s  f a r  grea t -  

er: 

pressure.  X-ray d i f f r a c t i o n  s t u d i e s  i n d i c a t e  t h a t  t h e  c l a t h r a t e  involves  the  

formation of the  t y p i c a l  hexagonally hydrogen bonded s t r u c t u r e  formed from s i x  

hydroxyl groups as discussed above. 

I n  the  presence of small gaseous molecules 

the  CH4'3C6H4(OH)2 complex is  q u i t e  s t a b l e  a t  ambient temperature and 

The c l a t h r a t e  can be prepared by c r y s t a l l i z a t i o n  from a sa tu ra t ed  solu- 

t i o n  of hydroquinone i n  e thanol  i n  the  presence of methane pressure32 or  from 
34 t h e  vapor phase comprising hydroquinone vaporized i n  a methane c a r r i e r  gas ._  

In  both cases, the f r a c t i o n  of the  c a v i t i e s  f i l l e d  wi th  methane is h ighly  

dependent on the  methane pressure  (Figure 0-6);  thus,  complete f i l l i n g  t o  

y i e l d  the  one t o  th ree  s toichiometry r equ i r e s  a pressure  of about 100 a t m  

(10.4 ma). The methane can be recovered f o r  use by d i s s o l u t i o n  i n  water o r  

e thanol  or  by hea t ing  (melt ing) .  No da ta  w a s  found on the  thermal s t a b i l i t y  

of t h e  c l a t h r a t e .  However, t he  melt ing poin t  of the  modif icat ion of hydro- 

quinone is 50°C (123OF). 

t h a t  temperature .  

Thus, i t  is probable t h a t  it w i l l  decompose a t  about 

Unfortunately,  t h e  grav imet r ic  capaci ty  of t he  methane/hydroquinone d a t h -  

rate is only 0.0485 g CH4/g hydroquinone due t o  the  high molecular weight of 

t he  host.  

Phenol and s e v e r a l  s u b s t i t u t e d  phenols a l s o  form c l a t h r a t e s  with methane 
1,34 and o ther  gases ,  inc luding  rare gases ,  e thane,  propane, and the  butanes.  
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PRESSURE, a t m  

Figure D-6. FRACTION OF CAVITIES FILLED WITH METHANE 
AS A FUNCTION OF PRESSURE (from Reference 32)  
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These c l a t h r a t e s  are a l s o  presumed t o  involve the  t y p i c a l  hexagonal hydrogen 

bonded oxygen s t r u c t u r e  from s i x  phenol groups toge ther  with the  t y p i c a l  1 /3  

s toichiometry.  However, t he  da t a  f o r  methane c l a t h r a t e s  with the  phenols pre- 

pared a t  -196OC i n d i c a t e  a s toichiometry c l o s e r  t o  1 CH4/2.4-2.6 phenol 

molecules ( i n s t e a d  of 1 /3  as with hydroquinone). This  may i n d i c a t e  t h a t  more 

than 1 methane molecule can be accommodated i n  the  cage s t r u c t u r e  of the  less 

l i g h t l y  bound phenol group. This hypothesis  i s  supported by the  f a c t  t h a t  

hydrocarbons up t o  n-butane can a l s o  be c l a t h r a t e d  by the  phenols although a t  

levels  less than 1 molecule per cavi ty .  34 

The d a t a  of Lahr and W i l l i a m s  on rare gas/phenol c l a t h r a t e s  i n d i c a t e s  

t h a t  t he  CHq/phenol c l a t h r a t e  would be much less s t a b l e  than the  hydroquinone 

analog a t  ambient temperature.  35 

1,2,4,5,12-14 Dianin 's  Compound 

Dianin 's  compound (C18H2002) i s  t h e  product of t he  condensation of m e s i t y l  

oxide wi th  phenol and is another  example of t he  hexa-host class of c l a t h r a t e s  

descr ibed 'above,  based on the  hydrogen bonding of t he  phenolic hydroxyl groups. 

The c a v i t i e s  formed are hour-glass sbaped, about 118 i n  length,  4.28 a t  t h e  

w a i s t ,  and 6.48 a t  t h e  two widest  points .  Although bes t  known f o r  i nc lus ion  

of so lvent  molecules, i t  a l s o  forms c l a t h r a t e s  wi th  f ixed  gases inc luding  

methane (Barrer and Shanson) .36 

c l a t h r a t e s  i n  t h a t  i t s  $ c l a t h r a t e  s t r u c t u r e  i s  s t a b l e  whether the  c a v i t i e s  

are f i l l e d  o r  not. Normally, three mole of phenol ic  o r  o ther  hexa-host type 

are assoc ia ted  with each cavi ty .  

compound f o r  methane is  6 CH4/6 Dianin compounds o r  0.06 g/g which may indi-  

cate t h a t  t h ree  CH4 molecules occupy each hour shaped cavi ty .  However, t h i s  

w a s  measured a t  the  b o i l i n g  poin t ,  182.5OC, and Barrer ind ica t e s  t h a t  t h e  

apparent s a t u r a t i o n  capac i ty  v a r i e s  wi th  temperature (a t  atmospheric pres- 

sure).36 

temperature wi th  e leva ted  pressure.  

Dianin'  s compound d i f f e r s  f rom o t h e r  phenol ic  

The apparent s a t u r a t i o n  capac i ty  of Dianiz ' s  

This  suggests  t h a t  such c a p a c i t i e s  might a l s o  exist  a t  ambient 

Even more important ,  t he  d a t a  i n d i c a t e  t h a t  s e v e r a l  CH4 molecules can 

e x i s t  i n  a clathrate cav i ty ,  a t  least i n  more or  less c y l i n d r i c a l  c a v i t i e s  

having diameters  not too much larger than t h e  k i n e t i c  diameter of methane. 
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1,2,9-13 Cyclodextrins 

The cyclodextrins are cyclic oligosaccharides containing six (a), seven 
( B ) ,  or eight ( v )  glucose units. The molecules in solution are presumably 
doughnut shaped with hole diameters of 68, 88, or 10-118, respectively, for 
the a, 6, and v forms. The voids in the center have been described as having 
a high electron density (Shaeffer and Dorsey) ,lo capable of complexing with 
various molecular species since no cage structure is evident. Furthermore, 
clathration has been shown to change the oxidation-reduction potential of 
certain molecules such as methylene blue. 10 

Alpha cyclodextrin (68)  also forms clathrates with various fixed gases, 
including methane at ambient temperature-pressure to the extent of 0.014 g 
CHq/g-a cyclodextrin. 

state and, therefore, may involve cage structures. Nonetheless, this illus- 
trates that cages as large as 68, (about 28 greater than the kinetic diameter 
of methane) can exhibit relatively high stability at ambient conditions, prob- 
ably due t o  the inherent stability of the "beta" structure. The latter is 
identical to the "alpha" structure, at least in the dry state, since the cav- 
ity is held together by covalent bonds rather than hydrogen bonds. However, 
the vaporization of methane from the clathrate may also exhibit an enthalpy 
change greater than llHvap in spite of the minimal coordination number due to 
the high electron density of the oxygen atoms lining the cavity walls. 

However, these clathrates are stable only in the dry 

The six, seven, and eight membered cyclodextrins are natural products 
produced by enzymatic action on amylose. 
membered analog could be produced synthetically. If so, the hole diameter 
would be of the order of 48 (by extrapolation), just right for inclusion of 
methane (d = 3.8-4.18). Furthermore, it may be possible to synthesize cyclic 

polyethers (from ethylene oxide) tailored for inclusion of methane. 

However, one wonders whether a five 

A further possible approach would involve the complete synthesis or modi- 
fication of existing cyclic polyethers or cyclodextrins with low solubility 
parameter detergent-like tails to produce inclusion hosts soluble in solvents 
which also dissolve methane. In this manner, the solvent capacity for methane 

might be enhanced by the action of the dissolved inclusion hosts. 
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17,18,37,38 3.0 Encapsulation i n  Preformed Molecular Sieves 

I n  the  broadest sense,  z e o l i t e s ,  molecular s i e v e s ,  and a c t i v a t e d  carbons 

can be considered analogous t o  the  host  c r y s t a l  of a c l a t h r a t e  except t h a t  t h e  

s t r u c t u r e  is preformed and s t a b l e  without t he  included guest  molecules. Such 

molecules have high i n t e r n a l  su r f ace  areas contained wi th in  cages, o r  pores 

( t u n n e l s )  having p r e c i s e l y  s i zed  e n t r i e s .  Such materials a r e  used not only 

f o r  adsorpt ion but a l s o  f o r  s epa ra t ion  of molecules having d i f f e r e n t  k i n e t i c  

diameters. Under ordinary condi t ions,  t h e  guest  molecules must be smaller 

than the k i n e t i c  diameter of t he  host ;  otherwise,  they w i l l  be excluded. It 

has r ecen t ly  been found t h a t  such molecular s i e v e  s t r u c t u r e s  can a l s o  be used 

f o r  encapsulat ion or  c l a t h r a t i o n  of guest  molecules l a r g e r  than the  charac- 

t e r i s t ic  pore opening size.37 

elevated temperatures such t h a t  t he  molecules are forced i n t o  the s l i g h t l y  

expanded pore openings. Once i n s i d e ,  and af ter  the  temperature has been 

quenched t o  ambient l e v e l s ,  the molecules are trapped a t  high p res su re  i n s i d e  

t h e  sieve.  Such a system tends t o  be q u i t e  s t a b l e  a t  ambient temperature and 

p r e s s u r e  u n t i l  reheated,  destroyed by a c i d ,  or  exposed t o  a s t ronge r  absorbate  

This  i s  accomplished a t  high p res su res  and 

( e m g o ,  H20). 

More s p e c i f i c a l l y ,  it has been found t h a t  i n e r t  gases such as argon, 

krypton, and methane can be s to red  e f f e c t i v e l y  i n  K-A-type z e o l i t e s  a t  25°C 

a f t e r  encapsulat ion a t  300" t o  400°C and 200 t o  400 MF'a (2050 t o  4100 a t m ) .  

Data f o r  encapsulat ion of CH4 and ethylene as w e l l  as krypton and argon are 

shown i n  t h e  following t ab le .  

Table 1. ENCAPSULATION OF GASES I N  ZEOLITE A17 

Afte r  t 
Temperature, Pressure,  Days a t  

Gas u ( A )  ("C) (ma) cm3 STP/g 25°C -- 
CH4 3.8 3 50 268 105, t = 4 98, t = 37 

C2H4 3.9 250 84 81, t = 2 76, t = 35 

A r  3.4 350 268 109, t = 3 77, t = 79 

K r  3.6 350 436 90.5, t = 1 90.5, t = 30 
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Thus, at  350°C and 270 MPa, 105 cc STP/g are encapsulated.  This corresponds 

t o  0.075 g/g, which is of t he  same order  of magnitude as f o r  adsorpt ion of CH4 

on z e o l i t e s  a t  3.6 MPa and 25°C. It should a l so  be noted t h a t  a f t e r  37 days 

a t  25OC and 1 a t m ,  less than 7% of the CH4 is l o s t .  However, because of t h e  

d r a s t i c  condi t ions r equ i r ed  f o r  t h e  encapsulat ion of cH4 i n t o  z e o l i t e  A, t h e  

process is obviously not f e a s i b l e .  Furthermore, t h e  temperature r equ i r ed  t o  

decapsulate  is undoubtedly too high (350°C) 

Figure D-7 shows the pore s i z e s  of a number of z e o l i t e s  re la t ive  t o  t h e  

k i n e t i c  diameters of a number of gases including cH4.18 

z e o l i t e  KA has a pore s i z e  opening of about 38 compared t o  3.88 f o r  methane, 

while L i A  a t  3.38 o r  N a A  at 3.5A are c l o s e r  t o  t h a t  of methane. 

o the r  molecular s i e v e  materials, including a c t i v a t e d  carbons and t h e  newly 

developed alumino phosphates, could be of i n t e r e s t .  39y40 The average pore 

s i z e  of an a c t i v a t e d  charcoal  can be var ied over wide l i m i t s ,  depending not  

only on the  condi t ions of a c t i v a t i o n ,  but p a r t i c u l a r l y  on t h e  b a s i c  s t r u c t u r e  

of t he  char s u b s t r a t e  before  a c t i v a t i o n .  For example, Saran charcoals  made by 

py ro lys i s  of polyvinylidene ch lo r ide  have been shown t o  have a uniform s l o t -  

l i k e  pore s t r u c t u r e  between graphi te- l ike l a y e r s  of carbon. The s l o t - l i k e  

pores are about 10A i n  l eng th  and t h i n  enough t o  restrict but not exclude t h e  

flow of branched chain hydrocarbons (neopentane) as compared t o  p l ana r  (ben- 

zene) o r  l i n e a r  (0-pentane)  hydrocarbon^.^' 
Takeda Chemical I n d u s t r i e s ,  Osaka, Japan, e x h i b i t s  an even smaller uniform 

pore s t r u c t u r e  of only 58,42 

adsorpt ion of var ious gases  on these  materials were twice those measured f o r  

g raph i t i zed  carbon black.43 The increased AH ( adso rp t ion )  was a t t r i b u t e d  t o  

the f a c t  t h a t  adsorbed spec ie s  i n t e r a c t  w i th  carbon l a y e r  planes on both 

s i d e s ,  while  molecules adsorbed on su r faces  i n t e r a c t  with only one carbon 

l a y e r  plane. Thus, even though t h e  pore openings of t h e s e  carbons are too  

l a r g e  f o r  encapsulates ,  t he  small pores o f f e r  t he  advantage of higher  hea t s  of 

adsorpt ion which w i l l  r e s u l t  i n  t he  achievement of a given su r face  coverage a t  

a lower pressure.  

It w i l l  be noted t h a t  

In  add i t ion ,  

A molecular s i e v e  carbon made by 

It is  i n t e r e s t i n g  t o  note  t h a t  the h e a t s  of 

A new class of molecular s i eves ,  t h e  alumino phosphates, have r e c e n t l y  

None of these materials, which been introduced by Union Carbide Corp. 40941 
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Figure D-7. MOLECULAR DIMENSIONS AND ZEOLITE PORE SIZE13 

D-19 



have so far been described, is particularly suited for encapsulating methane. 

Nonetheless, it seems a reasonable possibility that alumino phosphate or even 
zeolite molecular sieves could be tailored specifically for that possibility. 

5.0 Cross-Linked Sorbents Formed in the Presence of Templates 

The addition of templates or inclusion bodies during formation to control 
the size of the cavities and, therefore, the specificity of various adsorbents 
has been done with a number of materials including: 

alumino phosphates in which the templates are the cations 
d y l 2  

e Zeolites 
involved 

e Silica gels in which the gels ,are gelled around the template molecules, 
which are usual1 relatively larger, water-soluble molecules such as 
butyl orange dye 1 3  

e Modified dextrans which are macromolecular polysaccharides cross-linking 
to varying degrees in the presence of a suitable solvent and are used f r 
gel permeation separation of molecules on the basis of molecular size. 1 9  

Thus, it may be possible to develop adsorbents or absorbents tailored 

specifically for methane by controlled cross-linking of organic as well as 
inorganic polymers in the presence of high pressures of methane (or other 

templates of a similar size, including propane and butane). Examples would 
include: 

Polymerization of isobuty,lene with suitable cross-linking agent (e.g., 
diisobutylene) in a propane or butane solvent 

Three-dimensional polymerization of a silicon monomer or ,oligomer with a 
suitable cross-linking agent 

Cross-linking of various polymers including a hydrogen bonding polymer 
such as cellulose (with its appended hydroxyl groups) or polyacrylamide 
(with its amido or substituted amido groups) o r  polymers having a solvent 
affinity for methane such as polyisobutylene swollen by a low molecular 
weight solvent which in the dry state should contain a multiplicity of 
cavities lined with either hydrogen bonding groups or methyl groups. 

Vapor .phase formation of cross-linked silica gels in the presence of high 
concentrations or  pressures of methane. This might be accomplished by 
saturating a methane stream with a suitable silicon compound (e.g., SIC14 
or Si(0-CH 1 4 )  followed by vapor phase hydrolysis or vapor phase thermal 
decomposit 2 on. 
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6 ,O Other C l a t h r a t e  Systems 9 3 3 9 ''-I4 

There are many o the r  molecules which have been shown t o  c l a t h r a t e  guest  

molecules including: 

0 Phosphon i t r i t e s  

e Werner complexes 

0 Other metal ion-ligand combinations 

0 Ste ro ids  

0 Cholesterol  

0 Hexamethyl isocyanide ch lo r ide  

o Methyl naphthalene 

0 Cyc love ra t r i l .  

These c l a t h r a t e  types w i l l  not  be described here  s i n c e  no methane clath-  

rates were attempted, even though higher molecular weight gues t s  were included. 

However, such c l a t h r a t e  h o s t s  should not be excluded from any f u r t h e r  s t u d i e s  

with methane since t h e  la t ter  was never even t r i e d .  For example, it i s  pos- 

s i b l e  t h a t  some of t hese  would c r y s t a l l i z e  d i f f e r e n t l y  i n  t h e  presence of 

methane or  may contain l aye r - l i ke  cavities which would accommodate methane as 

w e l l  as l a r g e r  guest  molecules. I n  any case, it may be poss ib l e  t o  vary the  

molecular s t r u c t u r e s  of t h e  hos t  t o  give the  methane c l a t h r a t e .  Of p a r t i c u l a r  

i n t e r e s t  are t h e  metal-ion-ligand combinations s i n c e  they are capable of wide 

v a r i a t i o n  i n  both t h e  ion  and t h e  l igand used. 

7.0 Summary 
I 

We have seen t h a t  methane c l a t h r a t e s  e x i s t  which s e p a r a t e l y  e x h i b i t  t h e  

var ious p r o p e r t i e s  required f o r  on-board s to rage ,  although not together  i n  t h e  

same c l a t h r a t e .  Furthermore, a study of the  l i t e r a t u r e  suggests  t h a t  near ly  

any chemical spec ie s  near o r  below i t s  f r eez ing  point  has the  p o t e n t i a l  of 

a c t i n g  as a c l a t h r a t e  host  under the  r i g h t  condi t ions and i n  t h e  presence of a 

reasonable concentrat ion of a s u i t a b l e  guest  molecule. Thus, i t  is p o s s i b l e  

t h a t  a methane c l a t h r a t e  having a l l  of t h e  p r o p e r t i e s  required f o r  on-board 

s to rage  can be found or  developed although t h i s  may e n t a i l  a compromise be- 

tween s t a b i l i t y ,  capac i ty ,  and methane release p rope r t i e s .  
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We a l s o  recognize t h a t  c l a t h r a t e s  have p r o p e r t i e s  ak in  t o  s o l u t i o n s  on 

one hand and t o  molecular sieve-absorbate i n t e r a c t i o n s  on the  other .  This is  

i l l u s t r a t e d  by a comparison of i n t r a c r y s t a l l i n e  f r e e  volumes a v a i l a b l e  f o r  in- 

c lus ion  of B-clathrate h o s t s  with the  volumes a v a i l a b l e  i n  z e o l i t e s  as f 0 1 l o w s : ~  

Hydroquinbne/argon -0.05 c c / C C  

Urea /pa ra f f tn s  0.37 

Thiourea/hydrocarbons 0.41 

Gas hydrates  0 -46 

Z e o l i t e s  0.18-0 -54 

T k s ,  t h e r e  is a l a r g e  overlap i n  the p o t e n t i a l  i n c l u s i o n  volumes of z e o l i t e s  

and c l a t h r a t e s  which is  comparable t o  t h a t  i n  so lu t ions .  Inc lus ion  of up t o  

about 50% by volume are p o t e n t i a l l y  poss ib l e  by a l l  t h r e e  approaches, although 

t h e  r u l e s  governing t h e  accomplishment thereof are d i f f e r e n t .  

For s o l u t i o n s ,  t h e  primary in f luence  appears t o  be the  s o l u b i l i t y  param- 

eter which appears t o  be inve r se ly  p ropor t iona l  t o  molecular weight so t h a t  

50% (by volume) s o l u t i o n s  can only be achieved using so lven t s  with molecular 

weights c l o s e  t o  t h a t  of methane i t s e l f .  This is not f e a s i b l e  f o r  our pur- 

poses. With z e o l i t e s  (and o the r  adsorbents)  f o r  which t h e  hos t  s t r u c t u r e  i s  

inhe ren t ly  s t a b l e  by i t s e l f ,  t he  i n c l u s i o n  is  l imi t ed  at a reasonable pres- 

su re ,  e.g., 3.6 MPa, by t h e  hea t  of adsorpt ion of methane on t h e  s u r f a c e  t o  

less than a monomolecular coverage of t h e  su r face ,  which is usua l ly  less than 

p o t e n t i a l l y  p o s s i b l e  with i n c l u s i o n  compounds. The la t ter ,  however, can only 

be accomplished a t  high p res su res  or  w i th  l a r g e  molecules at  lower pressures .  

With c l a t h r a t e s ,  s t a b i l i t y  of the c l a t h r a t e  depends on the  s t a b i l i t y  of 

t h e  B-crystal la t t ice  r e l a t i v e  t o  t h a t  of t he  usua l  a-form and upon t h e  magni- 

tude of t he  hea t  of i n t e r a c t i o n  between hos t  and gbest .  Both c o n t r i b u t e  t o  

t h e  d i f f i c u l t y  of removal of t he  guests .  With most of the methane c l a t h r a t e s  

so f a r  found, t he  p o t e n t i a l  s a t u r a t i o n  of t he  f r e e  volume a v a i l a b l e  approaches 

loo%, probably because t h e  c l a t h r a t e  i s  not  discovered un le s s  s t a b i l i t y  i s  

achieved. A s  i nd ica t ed  above, s t a b i l i t y  under reasonable condi t ions is usu- 

a l l y  not achieved un le s s  t h e  c a v i t y  dimensions approach t h a t  of t h e  guest  

molecule so  t h a t  a r e l a t i v e l y  high coordinat ion number f o r  i n t e r a c t i o n  i s  

achieved. 
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Suggested Techniques f o r  Future  C la th ra t ion  Host Development: 

Although the re  i s  considerable  work i n  progress  toward developing t h e  

know-how f o r  t a i l o r i n g  new c l a t h r a t e  h o s t s  f o r  s p e c i f i c  guest  molecules, most 

of the  work is or ien ted  toward b io log ica l  and c a t a l y t i c  app l i ca t ions  us ing  

enzymes and i o n i c  species .  No re ferences  have been found ind ica t ing  ongoing 

work d i r ec t ed  toward t a i l o r i n g  c l a t h r a t e  host  molecules f o r  small and rela- 

t i v e l y  i n e r t  molecules such as methane o r  t he  i n e r t  gases.  However, should 

such a program be undertaken, t he  fol lowing p r e c e p t s  are ava i l ab le  t o  guide 

such development: 

a C l a t h r a t e  formation depends on t h e  a b i l i t y  of t he  hos t  molecules t o  form 
a c r y s t a l  h a b i t  which has c a v i t i e s  l a r g e  enough t o  accommodate the  speci-  
f i e d  gues t  molecules. This is 'usua l ly ,  although not necessa r i ly ,  a c r y s t a l  
hab i t  o the r  than the  normal c r y s t a l  s t r u c t u r e  formed i n  the  absence of 
t h e  host .  This  a b i l i t y  would be d i f f i c u l t  t o  p red ic t ,  a p r i o r i ,  al though 
it might be poss ib l e  f o r  a w e l l  versed c rys ta l lographer  t o  develop such a 
p r e d i c t a b i l i t y  on the bas i s  of molecular s t r u c t u r e .  

Indeed, t h i s  is e s s e n t i a l l y  the  approach used by MacNicol, e t  al . ,  l4  who 
, 

noted t h a t  many of t he  known c l a t h r a t e  s t r u c t u r e s  involve the  formation of a 

hexagonal r i n g  of hydrogen-bonded oxygen atoms from s i x  phenol ic  hydroxyl 

groups as shown below. 

Th c l a t h r a t e  h 

S t r u c t u r e  A 

ts which show t h i s  behavior include Dianin's  compound,2 re- 

l a t e d  corn pound^,^'^ h y d r ~ q u i n o n e , ~  phenols,6 and poss ib ly  water. 

-., a1 then demonstrated t h a t  t he  c l a t h r a t i o n  a b i l i t y  of such hexagonal s t ruc -  

t u r e s  could be s imulated us ing  t h e  permanent hexagonal s t r u c t u r e  of c e r t a i n  

MacNicol, = 

hexa s u b s t i t u t e d  benzenes: 
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Structure B 

where R-Z-radicals included a variety of substituted oxygen and sulfur radi- 

cals. However, the guest molecules bound by these clathrate hosts are larger 
than methane, indicating relatively large cavities. 

By the same token, new clathrate hosts might also be derived by varying 
the nature of R- in Structure A to include substituted phenol and also various 

aliphatic, alicyclic, and olefinic species, substituted or unsubstituted. 
Furthermore, the formation of suitable hydrogen-bonded hexagonal structures 
can also be formed with elements other than oxygen from Rows 5A and 6A of the 
periodic table, in particular through nitrogen atoms in amides. In addition, 

the formation of a hexagonally arrayed hydrogen-bonded structure is not an 
exclusive prerequisite, since urea forms tunnel clathrates with straight chain 
paraffins by forming a hydrogen-bonded two-dimensional helix spiral. (tunnel) 
around the paraffin molecule. Thus, the primary prerequisite is the hydrogen- 
bonding (or other complex forming) ability of the host while 'the secondary 
prerequisite is a molecular geometry (at least partially unpredictable) which 
will crystallize in the presence of a guest to a structure with cavities sized 
to accommodate the guest. 

Methods for Increasing the Stability of Clathrates and Improving Methane 
Release Properties: 

Stability is of major importance since it controls not only whether the 
methane can be contained at reasonable pressures under ambient conditions but 
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a l s o  the  condi t ions under which t h e  methane can be released.  The hydrate  of 

methane f o r  example is not  s t a b l e  enough s i n c e  it  r e q u i r e s  a p res su re  of 28 

MPa t o  e x i s t  under ambient temperature conditions.  On t h e  o the r  hand, t he  

hydroquinone/methane c l a t h r a t e  is too s t a b l e .  

a t  ambient temperature and pressure,  it r e q u i r e s  an elevated temperature 

(-50°C) or  t h e  in t roduc t ion  of a so lven t  t o  release the  methane. 

compromise is  i n  order  so t h a t  t he  c l a t h r a t e  w i l l  be s t a b l e  a t  ambient condi- 

t i o n s  a t  a reasonable p re s su re  of 1.4 t o  3.6 MPa, i n  o rde r  t h a t  methane re- 

lease can be achieved and c o n t r o l l e d  by pressure reduction. 

Thus, although it  can be s t o r e d  

, 
Obviously, a 

The parameters c o n t r o l l i n g  s t a b i l i t y  would include:  

e Hydrogen bonding power of the  groups through which the  c r y s t a l l i z a t i o n  
occurs,  as determined by the na tu re  of the groups themselves, as w e l l  as 
t h e  s i z e  and e l e c t r o p h i l i c  cha rac t e r  of t h e  o t h e r  groups i n  t h e  molecule. 
O f  p a r t i c u l a r  i n t e r e s t  i n  t h i s  regard would be the  amides and s u b s t i t u t e d  
amides . 
Geometry and symmetry of the  hos t  molecule as it a f f e c t s  t he  s t r u c t u r e  of 
the c r y s t a l  h a b i t  formed. The importance .of symmetry is suggested by t h e  
f a c t  t h a t  t he  hydroquinone (p-dihydroxybenzene) gives  a highly s t a b l e  
c l a t h r a t e  with HBr ,  whereas the  meta analogue does not e x i s t  a t  atmo- 
s p h e r i c  pressure.  

Suggestions f o r  Inc reas ing  Storage Capacity of Methane: 

The capaci ty  of a c l a t h r a t e  f o r  s t o r i n g  methane depends on t w o ' f a c t o r s :  

o How many host  molecules are required t o  provide one guest "cage" 
(i .e. ,  t h e  u n i t  c e l l )  

e Molecular weight of t h e  host  molecule. 

The s t r u c t u r e  of the u n i t  cell  and, t h e r e f o r e ,  the number of hos t  molecules 

pe r  guest  molecule is dependent i n  a very complex way on var ious c r y s t a l l o -  

graphic  f a c t o r s  and is beyond p r e d i c t i o n  at  t h i s  t i m e ,  except perhaps f o r  t h e  

"hexamer" c l a t h r a t e s  (descr ibed above) which tend t o  g ive  a 3/1 hos t  t o  guest  

r a t i o .  However, t he  u n i t  c e l l  is l i k e l y  t o  contain a reasonably small number 

of host  molecules, e.g., 

e 3 i n  t h e  hydroquinone-methane c l a t h r a t e  and o t h e r  "hexamer" h o s t s  

e 5.75 i n  the  methane hydrate.  

Thus, molecular weight may be the  f a c t o r  of g r e a t e s t  importance i n  determining 

capaci ty  e 
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On the other hand, it may be possible that some higher molecular weight 
molecules with complex symmetries may form clathrate structures in which the 
host/guest ratio is significantly less than the 3/1 found for the hexamer 
types, or that form structures with cavities sufficiently large to accommodate 

two or more methane molecules, as in the case of the urea tunnel adducts. In 
the latter case, diffusion would be the primary barrier to decomposition and 

the system would 'function in a manner analogous to that of absorption in a 
zeo ite. Most of the clathration entities forming larger cavities (and there 
are a lot of them, including Dianin's compound, the Werner complexes, deoxy- 
cho ic acid, and urea and thiourea, etc.) have been evaluated only with larger 
guest molecules (usually the solvent used) at atmospheric pressure and not 
with permanent gases such as methane under elevated pressures. For example, 
urea adduction of the homologous n-paraffin series has been extended downward 

to include propane and butane, which are stable at atmospheric pressure only 
at subzero temperatures. However, it is possible that adduction could be 
extended to include methane and ethane as well at ambient temperatures and 
elevated pressures. 

8 .  Future Research Recommendations 

It is apparent from the above discussion that any future work toward the 
development of clathrate systems for storage of natural gas will be highly 
empirical in approach. Such a program would involve: 

Evaluation of the formation and stability of clathrates of the known host 
systems toward methane at pressures up to 7.0 MPa. In particular, this 
would include the urea and thiourea systems and those whose cavities are 
presumed to be too large for methane as suggested above (particularly the 
ligand cross-linked metal ion, e.g., Werner complexes). 

Evaluation of the effect of variations in structure on stability and 
capacity. Of particular interest would be: 

N-substituted ureas and thioureas to enhance hydrogen bonding strength 
and, therefore, stability of the adducts 

Diphenols including the effect of ring substitution on stability of 
hydroquinone clathrates and the use of meta and ortho diphenols 

Variations based on cyclodextrin, including synthesis and evaluation of 
the five membered oligomer and conversion of the inwardly-oriented 
hydroxyl groups to ethers of varying size, amides, etc. to decrease the 
hole size, and/or the interaction chemistry with methane. 
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3) Determine the effect of more drastic changes in the molecular structure 
of amides on their clathration behavior, e.g., 

0 0  0 0 0 0 

NH2-C-C-NH, NH2-C-(CH 2 n  ) -C-NH2, CH3-C-NH2, CH3(CH 2 2  ) -C-NH2 
I I  I I I I 

0 0 0  0 0  

C 6 6  H -C-NH2, NH2-C-NH-C-NH2, NH2-C-C-NH2 
I I I  I I  

4 )  Synthesis and evaluation of cyclic polyamides (analogous to the crown 
ethers but with greater hydrogen bonding propensity) 

5) Evaluation of systems based on aliphatic alcohol groups such as glycols 
and substituted glycols, glycols and substituted ethers and polyethers 

6 )  Evaluation of systems based on aliphatic acids such as oxalic acid, 
acetic acid, chloroacetic acid, malonic acid, chlorinated malonic acid, 
maleic acid, and succinic acid derivatives. 
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APPENDIX E. 

EVALUATION OF DISSOLUTION AS A MEANS OF 
STORING NATURAL GAS 

SOLUTIONS 

1. Background 

The concept of an i d e a l  s o l u t i o n  is used t o  descr ibe  the  behavior of 

a c t u a l  s o l u t i o n s  as a f i r s t  approximation, similar t o  the  manner i n  which t h e  

concept of t he  i d e a l  gas is used t o  descr ibe  real gases. I n  both cases, the  

degree of accuracy of the approximations are reasonable f o r  many chemical 

e n t i t i e s ,  a t  least wi th in  c e r t a i n  l i m i t s ,  i.e., f o r  d i l u t e  so lu t ions  or f o r  

gases a t  low pressures. '  "In both cases, t h e  idea l i zed  l i m i t i n g  behavior can 

be e i t h e r :  1) def ined thermodynamically by means of empir ica l  expressions,  o r  

2) derived from idea l i zed  models of molecular systems. **' 
d e f i n i t i o n  of an i d e a l  s o l u t i o n  is: "one i n  which the  a c t i v i t y  equals  t he  mole 

f r a c t i o n  over the e n t i r e  composition range and over a non-zero range of temper- 

a t u r e  and pressure." Thus, f o r  s o l u t i o n s  of gases which approximate the  i d e a l  

gas l a w s  reasonably c lose ly ,  t he  i d e a l  s o l u t i o n  i s  def ined by Raoul t ' s  l a w :  

The thermodynamic 

P1 i = POX1 

and 

p i  E po x 
2 2 2  

where : 

P i  o r  Pi = 

X1 o r  X2 

I d e a l  p a r t i a l  vapor pressures  of Components 1 and 2 

= Mole f r a c t i o n  of Components 1 o r  2 i n  l i q u i d  mixture 

P y  o r  P!$ = Equil ibr ium vapor of Components 1 and 2 over pure materials. 

Raoul t ' s  l a w ,  i n  t h i s  case, w a s  deduced on t h e  assumption of zero hea t  of mixing 

and an entropy of mixing t h a t  is independent of temperature and of p e c u l i a r i t i e s  

of molecular s i z e s  and shapes. Thus, an i d e a l  s o l u t i o n  is def ined i n  terms of 

zero  heat of mixing. A c o r o l l a r y  of t h i s  d e f i n i t i o n  is Henry's l a w  which states 

t h a t  the  equi l ibr ium value of t he  mole f r a c t i o n  of a gas dissolved i n  a l i q u i d  

is d i r e c t l y  propor t iona l  t o  the  a c t i v i t y  (o r  p a r t i a l  p ressure  i f  t h e  gas approx- 

imates i d e a l i t y )  of t h a t  gas  above the  l i q u i d  sur face .  



Where: 

KH = Henry's l a w  constant.  

Henry's l a w  is not r e s t r i c t e d  t o  i d e a l  s o l u t i o n s ,  a t  least i f  c o r r e c t i o n s  f o r  

dev ia t ions  of t h e  gas from i d e a l i t y  a r e  taken i n t o  account. Thus, s o l u b i l -  

i t i e s  of gases  i n  var ious s o l u t e s  are o f t e n  defined i n  terms of the  Henry's 

l a w  constant  determined a t  1 atmosphere p re s su re  ( o r  p a r t i a l  p re s su re )  . 
According t o  Raoul t ' s  l a w ,  methane can be s t o r e d  a t  ambient temperatures 

at  s u b s t a n t i a l l y  reduced p res su res  as an i d e a l  s o l u t i o n  i n  a l i q u i d  of low 

v o l a t i l i t y .  However, t h e  vapor pressure of l i q u i d  methane a t  25°C (extrapo- 

l a t e d )  i s  29.3 MPa (4.248 psia) . '  

percent  s o l u t i o n  i n  a non-volati le so lven t  w i l l  s t i l l  exert a pressure i n  

excess of 14 MPa (2000 p s i ) .  

MPa a t  25OC r e q u i r e s  reducing t h e  mole f r a c t i o n  of methane i n  t h e  s o l u t i o n  t o  

somewhat less than 0.135; reduct ion t o  1.8 MPa, t o  less than 0.07 mole f r ac -  

Thus, methane s t o r e d  a t  25OC as a 50 mole 

To reduce t h e  ambient s t o r a g e  pressure t o  3.6 

t i on .  It is  apparent,  t h e r e f o r e ,  t h a t  t h e  u t i l i t y  of s to rage  as an i d e a l  

s o l u t i o n  is  not  a p a r t i c u l a r l y  promising approach, un le s s  a nonideal  so lven t  

r a n  be found such t h a t  t h e  s o l u t i o n  with methane e x h i b i t s  a l a r g e  negat ive 

dev ia t ion  from Raoult ' s  l aw.  

2. Regular So lu t ion  Theory' * 
Many non-ideal s o l u t i o n s  have s u f f i c i e n t  thermal energy t o  overcome t h e  

tendency t o  seg rega te ,  t hus  d i sp lay ing  nea r ly  i d e a l  entropy of mixing. Such 

s o l u t i o n s  have been designated by Hildebrand and Sco t t  as "regular"  solu- 

t ions. '  

energy of mixing, AFM) compared t o  i d e a l i t y  w i l l  depend on d i f f e r e n c e s  i n  t h e  

heat  of mixing, AHM. 

developed an equat ion f o r  t h e  s o l u b i l i t y  of gases  i n  t h e  form: 

Differences i n  s o l u b i l i t y  (i.e., d i f f e r e n c e s  i n  the change of f r e e  

On t h e  b a s i s  of r egu la r  s o l u t i o n  theory,  Hildebrand 

(3)  
2 (sl - s2> i v2 log x2 = log x2 - 2.303 RT 

Gjaldbaek and Hildebrand3 subsequently modified t h e  equat ion f o r  Flory-Huggins 

mixing as follows: 

E-2 



i v2 2- [log - v2 + 0.434(1 - -I[ v2 ( 4 )  

v1 v1 2.303 RT ('1- '2) log x2 = log x2 - 

Where: 

= Equilibrium mole fraction of Component 2 in a liquid mixture *2 

xzi = Ideal solubility of Component 2 in mixture 

V1,V2 = Molar volumes of components 

R = Gas constant = 1.9865 

T = Temperature of solution, OK 

S1, S2 = Solubility parameters of Components 1 and 2. 

The solubility parameter, also called the cohesive energy density, S, in turn 
is defined as follows: 

AH: - RT 1 /2 
s1 = ( ) 

v1 

Where : 

AH! 

R,T,V1 = A s  above. 

The ideal solubility, Xi, can be estimated by the following equation: 

= Heat of vaporization of Component 1 at solution temperature 

i AH 1 1  
2.303 R (7 - log x2 = 

( 5 )  

Where: 

T =I Solution temperature, O K  

TB = Boiling point, OK. 

Thus, the primary parameters controlling the solubility of a non-polar gas 
such as methane in non-polar solutions is presumably the temperature of the 
solution relative to the boiling point of the gas, the molal volumes of the 
components and, in particular, the solubility parameter, S ,  as defined above. 
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It will be noted that if methane (or any other non-polar gas) is dissolved in 
a solvent having the same molal volume and the same solubility parameter as 

methane, the last two terms in the equation would be zero and the solubility 
would be that calculated for an ideal solution. 

The Hildebrand treatment of regular solutions has been modified empiric- 
ally to yield better correlations with non-associated polar solvents by Yen 
and M~Ketta.~ 
correlations are marginal compared to the effects sought in this review. 
Other reviews of the literature on gas solubility in liquids include Battino, 

However, the differences in actual solubility covered by these 

22 
La~son,'~ and Pierotti. 24 

Considerable data on the solubility parameters of various molecular 
species are available in the literature, most of which are based on heats of 
vaporization measured at ~5"c.l , 2 , 5 , 6 3 9  

ScottlS2 specifies the temperature at which AH However, the 
temperature at which the AH were derived is not necessarily clear in other 
sources although 25OC is usually implied. 
methane and ethane <AHv + V) were not found to give good estimates of S at 
25°C. Furthermore, in some literature sources, solubility parameters were 
estimated from solubility data in solvents for which S values are avail- 
able.19297s8 However, in this case, variations attributed to S may actually 

be the result of variations in molar volume (i.e., in the Flory Huggins cor- 

rection). 

The data presented by Hildebrand and 
V was measured. 

V 

In particular, sufficient data for 

Alternate methods of estimating the solubility parameter are also avail- 
5 able as outlined by Hildebrand and ScottlS2 and by others. 

According to the data cited by Hildebrand and Scott,:! methane behaves in 
most solutions like other non-polar molecules, subject primarily to the van 
der Waals forces. For example, the solubility of methane in various solvents 
correlates nicely with that of other non-polar gases, including H2, N2, CO, 

02, C02, and the rare gases, on the basis of their "force constants," the 
parameters' of the intermolecular energy function as expressed by Lennard- 
Jones. Furthermore, the solubility of methane correlates rather well with the 

solubility parameter of the solvent, which is a measure of the cohesive energy 
density of the solvent. Exceptions -to this, which tend to indicate solvation 
or some degree of polar or acid-base interaction (as in the case of C02- 

benzene mixtures), have not been found for methane solutions. 
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The efficacy of Equation 4 for estimating the solubilities of a number of 
non-polar gases, including CH4, in various solvents has been tested by Gjaldbaek 

and associates with reasonably positive *8 However, these results 
were dependent on estimations of the solubility parameter of methane (and other 

gases near or above their critical points) from Equation 4 using solubility 
data in other solvents of known solubility parameters. Their estimate of S 

for methane on this basis is 6.2, far greater than our 'own estimate of some- 
thing less than 4. 

It is also interesting to note that some of the higher members of the 
paraffin series, such as n-heptane (C7HI6) and in particular isooctane 

(C8H18), behave in solutions with perfluorocarbons as if their solubility 

parameters are significantly greater than those calculated from presumably 
reliable AH density data at solution temperature. v 2 

The effect is greatest with i-CgH18, which has a labile tertiary hydrogen 
atom that may behave somewhat as a Lewis acid. However, the effect apparently 
disappears with paraffins below 7 carbon atoms whose hydrogen atoms are less 
labile (at least toward thermal decomposition). Thus, such an effect would 

not be expected with methane. 

Negative deviations from ideal solution behavior would be expected pri- 
marily with strong interactions (e.g., dipole, acid-base, or hydrogen bonding) 

between solute and solvent, which appear to be unlikely to occur with methane, 

at least with common solvents. 

On the other hand, physical adsorption of methane on surfaces such as 
activated carbon or silica gel do in fact represent strong (van der Waals 
forces) interactions between methane and a chemical substrate (solid, in this 

case) which are comparable to negative deviations from "ideal interaction." 
Thus, negative interactions with methane are possible and might be simulated 

in the liquid phase by surface forces either in mixed interacting solvent 
combinations or by adding solid surfaces to form a colloidal suspension. 

Data Collection 

The solubility data found in this study, covering a broad spectrum of 
solubility parameters and molal volumes as well as polarities, are shown in 

Table 2, and in Figure 1 plotted as a function of solubility parameter. In 
general, the data correlates reasonably well with the solubility parameter 
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from 5.5 to 10 with solubility decreasing with increasing solubility param- 
eter. 

Most of the solubility data available in the literature were measured in 
terms of mole fraction of methane in equilibrium solution at the standard con- 
ditions of 25OC and 1 atmosphere total pressure. For our purposes, these data 
have been converted to molal solubilities at more practicable conditions of 34 

atmospheres ( 5 0 0  psia). and 25OC (77'F) assuming that Henry's Law is obeyed, 

which is reasonably accurate for methane up to at least 34 atm. Solubilities 
in the lower paraffinic hydrocarbons (C2-C4), however, were derived from 
vapor-liquid equilibrium data for those systems in which both components 'have 
appreciable, or high concentrations in both phases in two ways: 1) equilibrium 
concentrations in liquid at a total pressure of 34 atm as measured, and 2 )  by 

correcting the measured mole fractions of methane in the liquid phase at 25°C 

to a methane partial pressure of 34 atm via Henry's Law. 

\ 

Solubility @ 34. atm cH4, 250C = 

x 34 (7 )  
Mole Fraction in Liquid Phase (3 25oC 

Mole Fraction cH4 in'Vapor Phase x Total Press 

Such values are fictitious in the sense that they can be achieved only at pres- 
sures much greater than 34 atm or not at all in the case of ethane. However, 

they do represent the approximate solubilities which would be achieved if the 
solvent had the same solution properties as C2-C4 hydrocarbons but were non- 
volatile. 

It will be noted from Figure 1 that the solubilities of methane in a wide 

variety of solvents other than alcohols correlate more or less linearly with 
the solubility parameter of the solvent on a log molal solubility versus S 

basis, semiquantitatively in agreement with Equations 3 or 4.  However, Figure 
1 is intended primarily to be illustrative and not as a definitive 
correlation. Thus, the scatter in the data may result from failure to account 
properly for differences in molal volume of solute and solvent as well as 

inaccuracies in: 

2 

e . Solubility measurements 

0 Estimation of solubility parameters 
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e Deviations from ideal gas behavior. 

There are several features of the correlation that need comment. 

1 .  Applicability of Solubility Parameter Values 

Although the correlation conforms, in general, to Equation 3 which has a 
theoretical basis, it should not be considered rigorous and quantitative. In 
particular, the aesignment of quantitative values to the solubility parameter, 
S ,  is somewhat in question since values of heats of vaporization and molar 
volumes at solution temperature (25") are sometimes difficult to find. Fur- 
thermore, as Hildebrand has pointed out, in some cases paraffin hydrocarbons 
in perfluorocarbons tend to behave as if the solubility parameter of one (or 
hnth) of the components is shifted.2 
literature to use alternate methods of estiniating S ,  in particular, by de- 
fining the solubility parameter using empirical solubility determinations with 
solvents or solutes whose solubility parameters are known. 

Thus, there is a tendency in the 

The solubility parameter of methane at 25OC cannot be estimated by the 
method used in this study (based on AHv + V,), since 25OC is considerably 
above its critical temperatures (TC = -82OC). 
at 25°C is presumably zero and the net energy of vaporization (AHv - RT) may 
actually be negative (i.e., (0 - RT) = -592 cal/mole). However, in our case 
we have skirted the problem by correlating in terms of S2 rather than ( S 1  - 
S2) 
of methane corresponding to the values used for various hydrocarbon solvents 
is presumed to be less than those estimated for propane ( S  = 5.85) from actual 

AHv + VM data, and for ethane ( S  = 4.05) estimated by extrapolation of AHv 
from lower temperatures and by extrapolation of S values at lower temperatures 
from measured hHV + VM data. 
presumably less than 4.0, comparable only to the perfluorocarbons, silicones, 
or lower hydrocarbons which have been found to be the best solvents. 

Thus, the heat of vaporization 

2 

2 as suggested by Equations 3 or 4. In any case, the solubility parameter 

Thus, the solubility parameter of methane is 

2. Effect of Molecular Weight 

It will be noted that with the paraffin hydrocarbon series, the correla- 
tion appears to hold up to about C, above which the mole fraction solubility 

increases with increasing molecular weight. These deviations are qualita- 
tively if not quantitatively accountable in terms of the differences in molal 
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volumes which a f f e c t  t h e  t h i r d  t e r m  i n  Equation 4 ,  

i t ies  i n  perf luoroheptane and octamethyl cyc lo t e t r a s i loxane  can a l s o  poss ib ly  

be explained i n  these  terns. However, t h e  phys ica l  explanat ion of th i s  phe- 

nomenon may be t h a t  i n  the  l a r g e r  molecular weight so lven t s ,  the  d isso lved  

methane is i n t e r a c t i n g  not  with the  molecule as a whole but wi th  smaller seg- 

ments of the  molecule. This physical  p i c t u r e  i s  cons i s t en t  wi th  the  f a c t  t h a t  

(n-ChF9I3N which might be expected t o  behave as a s p h e r i c a l  e n t i t y  appears t o  

conform t o  t h e  s o l u b i l i t y  parameters c o r r e l a t i o n  very w e l l ,  whereas n-C7FI6 

and octamethyl cyc lo t e t r a s i loxane  do not. This  concept could be important i n  

designing h igher  molecular weight so lvents  having good capac i ty  on a gravimet- 

r i c  as w e l l  as a mole f r a c t i o n  basis .  It is  unfor tuna te  t h a t  with t h e  

n-paraffin series of so lven t s ,  the  increase  i n  s o l u b i l i t y  on a mole f r a c t i o n  

b a s i s  with inc reas ing  molecular wieght above n-heptane is not s u f f i c i e n t  t o  

overcome the  l o s s  i n  grav imet r ic  capaci ty  due t o  the  molecular weight i nc rease  

(compare s o l u b i l i t i e s  i n  Table 2 on a mole f r a c t i o n  and l b / l b  bas i s ) .  

The somewhat high so lub i l -  

On the  o the r  hand, i f  high solvency of propane o r  p a r t i c u l a r l y  methane, 

e thane,  and propane could be simulated i n  terms of a m u l t i p l i c i t y  of methyl-, 

ethyl- ,  or propyl-group branches on a sur face  (e.g., s i l i c a  g e l )  o r  on an 

oligomer, t h e  inc rease  i n  molecular weight might be overcome by the  inc rease  

i n  solvency i n  the  s i d e  chains  so t h a t  the  so lvent  maintains the  methane 

capac i ty  on a gravimet r ic  b a s i s  c lose  t o  that  of methane, ethane, o r  propane. 

Ethane a t  3.6 MPa vapor pressure ,  f o r  example, would d i s so lve  methane at a 

r a t i o  of 0.35 g CH4/g ethane. I f  t h i s  solvency can be maintained wi th  the  

e t h y l  group branches on a low polymer, a gravimet r ic  capac i ty  exceeding t h a t  

of adsorp t ion  could be achieved. 

3.  Al ipha t i c  Hydroxyl-Group Ef fec t  

The s o l u b i l i t i e s  of methane i n  a l i p h a t i c  a lcohols ,  al though c o r r e l a t a b l e  

wi th  s o l u b i l i t y  parameters appear t o  be g r e a t e r  at the  same s o l u b i l i t y  param- 

e te r  value than found f o r  t h e  o ther  so lven t s  having no hydroxyl groups. This  

suggests  t h a t  hydrogen bonding, i f  s t rong  enough, does con t r ibu te  t o  so lvent  

power f o r  methane independent of t h e  s o l u b i l i t y  parameter. However, t he  

con t r ibu t ion  of the  hydroxyl groups t o  s o l u b i l i t y  tends t o  be overwhelmed by 

t h e i r  e f f e c t  on s o l u b i l i t y  parameter. Nonetheless,  t h e  very ex is tence  of t he  

e f f e c t  suggests  t h a t  i t  should be poss ib l e  t o  u t i l i z e  i t  t o  design systems 

wi th  enhanced s o l u b i l i t y  f o r  methane as discussed below. 
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a. Chemical Modification of Adsorbents 

One approach would be t o  enhance t h e  adsorpt ion capaci ty  of s o l i d  adsor- 

bents  by providing a m u l t i p l i c i t y  of hydroxyl ( o r  o t h e r  hydrogen bonding 

group, i nc lud ing  amides) on the  surface.  Such adsorbent su r faces  might be 

expected t o  e x h i b i t  a higher  heat of adsorpt ion,  so t h a t  g r e a t e r  s u r f a c e  

coverage would be achieved a t  lower p re s su res  than f o r  adsorbents w i th  non- 

po la r  surfaces .  This would suggest t h e  coverage of high su r face  area 

adsorbents w i th  the  s p e c i f i c  groups (o rgan ic  o r  i no rgan ic )  having t h e  h ighes t  

a f f i n i t y  f o r  methane presumably by hydrogen bonding. 

This concept i s  c o n s i s t e n t  with the r e s u l t s  of Chuik, et  al., lo which 

showed t h a t  r e a c t i o n  of t h e  s i l a n o l  groups of a s i l ica  g e l  w i th  an amino 

organo s i l a n e  compound reduced both the s u r f a c e  concentrat ion of s i l a n o l  

groups * the  adsorpt ion capaci ty  f o r  methane and o t h e r  hydrocarbons. 

ever,  these r e s u l t s  are not s t r a igh t fo rward ,  since t h e  treatment replaced t h e  

s i l a n o l  groups with r a t h e r  bulky 

How- 

OCH3 
I I  
I 1  

-Si-O-Si-(CH2)3NH2 

OCH3 

groups, which could.have prevented adsorpt ion by bulk alone. 

b. Multicomponent Liquid Solvent System 

Design multicomponent l i q u i d  so lven t  systems i n  which the  hydroxyl o r  

o t h e r  hydrogen bonding func t ion  is b u i l t - i n  i n  such a way as  t o  enhance sol-  

vency. One approach might be a dual  c o l l o i d a l  system i n  which a d i s c r e t e  

second l i q u i d  o r  s o l i d  phase material provides a m u l t i p l i c i t y  of hydroxyl 

groups, i n t e r f a c e d  with and dispersed i n  a continuous phase having a low solu- 

b i l i t y  parameter. The easiest example would involve a d i spe r s ion  of c o l l o i d a l  

s i l i c a  (mil l imicron diameter) i n  a low s o l u b i l t y  parameter so lven t  such as a 

hydrocarbon, perfluorocarbon or  s i l i c o n e .  Such a material could, of course,  

be made e i t h e r  s o l i d  or  l i q u i d .  I n  t h i s  case, the  d i spe r s ing  funct ion would 

be provided by a p a r t i a l  coverage (by r e a c t i o n )  of t h e  su r face  with low solu- 

b i l i t y  parameter t a i l s  compatible with the  matrix phase ( s i l i c o n e s )  
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C. Dual Function' Solvents 

Design single, dual function molecules or dual functional mixtures of 

solvent molecules containing both a low solubility parameter function and a 
hydrogen bonding or other affinity function in the form of a hydroxyl, amido 
or other groups. In particular, if the hydroxyl group effect on the solubil- 
ity parameter of the solution could be minimized by either: 

0 Hindrance of the hydroxyl effect on S by surrounding it with low so lu -  
bility tails in a single solvent molecule. 

e Neutralization of the effect of the hydroxyl group on solubility param- 
eter of the solution by hydrogen bond formation in a manner similar to 
the effect of ether formation on solubility parameter and solvent power 
of alcohols (e.g., S for diethyl ether = 7.5 compared to 12.7 for ethyl 
alcohol from which it is made). Similarly perhaps, the solubility param- 
eter of R-O*"H-CH3 may be considerably less than ROH itself. 
solvent migtures containing a low solubility parameter solvent molecule 
as a matrix plus a strongly hydrogen bonding species (such as alcohol) & 
concentrations comparable to that of the expected solute concentrations 
could exhibit the advantages of both hydrogen bonding and low solubility 
parameter. 

If so, 

d. .Hydrogen-Bonding Groups Other: than Hydroxyl 

Find other organic or inorganic groups having even greater hydrogen bonding 

power than aliphatic hydroxyl groups. In particular, Wolfenden has reviewed 
and analyzed the "hydrophilicity" of various organic groups in terms of the 
water-to-vapor distribution coefficients for various aqueous solutfons of 
uncharged organic compounds containing these groups. l 2  

that the hydrogen bonding propensity of various groups increases in the fol- 
lowing order: 
hydes and ketones < nitriles < amines < alcohols < H20 < acids, phosphotri- 
esters < Amides and diols < q-substituted amides < peptides < guanidines. 
This suggests that q-substituted amides and guanidines in which the 

q-substituent is a long chain hydrocarbon or perfluorocarbon dissolved in an 

appropriate solvent of low solubility parameter should be worthy of evalu- 

ation. 

The results suggest 

Alkanes < - SH < - C1 < ethers and thioethers < esters < alde- 

14 Solubility of Efethane in Polymers 

Considerable literature exists on the solubility of various gases including 
methane in a number of polymers. 
the diffusion characteristics of polymeric films, one of the basic parameters 

Most of this work was aimed at determining 



of which is solubility. The best polymeric solvent found so far is silicone 
rubber, which exhibits a significantly greater capacity for methane (0.018 
g/g) than polyethylenes, polyisobutylene and other systems. l4 
the gravimetric capacity of even silicone rubber is very low compared to the 
low molecular weight solvents. 

Unfortunately, 

The factors controlling solubility of fixed gases in these systems was 

not completely delineated by the literature review. For example, the 
solubility of methane in polyethylene in some studies appears to be limited to 
(or correlatable with) the amorphous phase. 18,19 Yet other studies have found 
relatively little difference between the highly crystallizable linear poly- 
ethylene and amorphous systems such as polyisobutylene. '' 
be trending toward a "hole" theory comparable to adsorption in such common 
adsorbents as activated carbon in that the solubility is a function of the 
"hole" volume. 

The theory seems to 

16,20 

Nonetheless, solubility would be expected to be greatest in relatively 

low solubility parameter polymers such as polyisobutylene and the silicones. 
Furthermore, amorphous polymers would be expected to exhibit greater "hole 
volume" than crystalline polymers. In any case, one wonders if the free 
"hole" volume in polyisobutylene or silicone polymers could be controlled by 
controlled cross-linking while in a swollen state with an easily volatilized 
solvent. Of particular interest would be silicon-containing polymers in- 
cluding: 

0 Polyvinyl trimethyl silane which has been shown to dissolve m thane to 13 the extent of four times that of polyethylene terephthalate. 

e Poly 1-(Trimethyl Sily1)-1-propyne which has recently been shown to 21 dissolve oxygen to an extent ten times that of other known polymers. 

It is interesting to speculate as well that specialized adsorbents, as 
opposed to absorbents, could be developed from polymeric systems cross-linked 
in the swollen state, containing hydrogen bonding groups such as hydroxyl or 
amide groups, e.g., polyvinyl alcohol or polyethylene terephthalate. Such 

polymeric systems are sometimes called reticulated polymers and offer the pos- 
sibility of adsorbents with surface chemistries tailored for the particular 
adsorbate desired. We do not have surface area data on such systems but dry 
reticulated ion exchange resins have been evaluated as catalysts. 
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Such systems could be of considerable i n t e r e s t ,  a t  l e a s t  conceptually,  

s ince  they may lead t o  negative deviat ions  from idea l  interact ion at the s o l i d  

surfaces.  However, strong adsorption would be expected to occur only for 

monomolecular surface coverage. Thus, surface area would be important. 
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SUMMARY AND CONCLUSIONS 

The available literature data on the solubility of methane in a wide var- 
_ *  

iety of solvents has been collected and analyzed and the general conclusions 
are as follows: 

e In general, the data pretty well conforms to the classical views of 
Hildebrand on regular solutions, i.e., solutions "in which orienting and 
chemical effects are absent and in which the distributions and orienta- 
tions are random..." In other words, methane behaves in most solutions 
as non-polar molecules (including the rare gases) subject primarily to 
Van der Waals dispersion forces. 

0 The primary parameters controlling solubility in regular solution theory 
are the molal volume and the Hildebrand solubility parameter relative to 
that of methane, the solubility parameter (or cohesive energy density) 
being defined as: 

where: 

AH; = Heat of vaporization at solution temperature 

VI = Molal volume of Component 1. 

0 Since the solubility parameter of methane is at the lower end of the 
scale (S = <4), the best solvents for methane are the perfluorocarbons, 
the silicones, and the lower aliphatic hydrocarbons such as propane. 

0 The best solvent for methane so far identified is propane, in which 
methane is soluble to the extent of 0.15 mole fraction or.0.063 g CH4/g 
solvent. However, this is a lower capacity on a mass ratio basis than 
can be expected from adsorption on activated carbon. 

0 On a mole fraction basis, the solubility of methane in octamethyl cyclo- 
tetrasiloxane (0.32) and in perfluoro n-heptane (0.28) is greater than in 
propane but on a gravimetric basis the solubilities are much lower (0.025 
and 0.016 respectively) due to their high molecular weight. 
solubilities in lower molecular weight perfluorocarbons and silicones 
s hou id be determined . 

Thus, methane 

0 In the aliphatic hydrocarbon series, the solubility of methane decreases 

fi with increasing molecular weight (and increasing S) up to about C 

Above 
(n-hexane) e 

tion basis in this c ass of solvents increases rapidly with increasing 
molecular weight to 0.32 for C32 (squalane). 
weight increases more rapidly than solubility so that the solubility on a 
gravimetric basis continues to decrease with molecular weight. 

however, the solubility of methane on a mo e frac- 

Unfortunately, the solvent 
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o The s o l u b i l i t y  of methane i n  isobutane (0.061 g/g)  and neopentane (0.057 
g/g) suggests  t h a t  t h e  s o l u b i l i t y  on a gravimet r ic  b a s i s  may be main- 
t a ined  whi le  molecular weight i nc reases  f o r  highly branched p a r a f f i n  
hydrocarbon. Unfortunately,  d a t a  on t h e  s o l u b i l i t y  of methane in higher  
molecular weight highly branched p a r a f f i n s  is lacking. 

6 I n  p a r t i c u l a r ,  prel iminary ca l cu la t ions  suggest that  i t  may be poss ib l e  
t o  design h igher  molecular weight so lven t s  having gravimet r ic  c a p a c i t i e s  
i n  the  range o f ,  o r  g r e a t e r  than,  f o r  adsorpt ion.  The s o l u b i l i t y  d a t a  
presented above f o r  t h e  lower p a r a f f i n i c  hydrocarbons (e.g., propane) 
a c t u a l l y  represent  t he  concent ra t ion  of methane i n  the  l i q u i d  phase of a 
mixture i n  equi l ibr ium wi th  a vapor phase conta in ing  a considerable  
propor t ion  of so lvent  vapor. For example, i f  t he  equi l ibr ium 
concent ra t ion  of methane i n  propane a t  25°C and 3.5 MPa t o t a l  p ressure  i s  
cor rec ted  t o  3.5 MPa p a r t i a l  p ressure  of methane, t h e  s o l u b i l i t y  would 
inc rease  from 0.063 g /g  t o  0.11 g/g propane. With ethane, the  equi l ib-  
rium concent ra t ion  of methane i n  the l i q u i d  phase a t  25OC and 4.9 MPa is 
about 0.05. Thus, i f  cor rec ted  t o  3.5 MPa p a r t i a l  p ressure  of methane, 
t he  s o l u b i l i t y  i n  methane becomes 0.35 g/g of ethane. Thus, i f  we could 
t i e  down t h e  methyl, e t h y l  or  propyl groups and s t i l l  achieve t h e i r  sol-  
vent power f o r  methane, it may be poss ib l e  t o  achieve a v i ab le  non- 
v o l a t i l e  so lvent  f o r  our purposes. I n  p a r t i c u l a r ,  i f  we could s imula te  
the  high solvency of methane, ethane, or  propane i n  terms of a mul t ip l ic -  
i t y  of methyl, e t h y l ,  or propyl groups as branches on a sur face  (e.g., 
s i l i ca  g e l )  o r  an oligomer, the  gravimetri ,c s o l u t i o n  capaci ty  f o r  methane 
might be maintained a t  a reasonable l eve l .  For example, i f  t he  solvency 
of e thane can be maintained wi th  e t h y l  groups on a low molecular weight 
polymer, a gravimet r ic  capac i ty  exceeding t h a t  f o r  adsorpt ion might be 
achieved: 

Calculated 
g /g  

CH3-CH3 

CH3 CH3 CH3 
I l l  
CH2 CH2 CH2 
I l l  ... C - C - C ... n 

CH3 I 
CH2 I 

CH3 I .  
CH2 I 

.C- C - C - C ... n 

0.35 

0.24 

0.18 

The s o l u b i l i t i e s  of methane i n  a l i p h a t i c  a l coho l s ,  al though c o r r e l a t a b l e  
wi th  s o l u b i l i t y  parameters,  appear t o  be g r e a t e r  a t  the  same s o l u b i l i t y  
parameter value than f o r  o the r  so lven t s  having no hydroxyl groups. This  
sugges ts  t h a t  hydrogen bonding power can con t r ibu te  t o  so lvent  power f o r  
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methane independent of the solubility parameter. However, this contribu- 
tion to solvency by the hydroxyl group is overwhelmed by its effect on 
solubilty parameter. Nonetheless, the effect suggests that it may be 
possible t 0:  

1)  Enhance the adsorptive capacity of solid adsorbents by providing a multi- 
plicity of hydroxyl groups on the surface. 

2)  Design multicomponent liquid solvent systems in which the hydroxyl or 
other hydrogen bonding function is build into the system to enhance 
solvency. 

3 )  Design dual function systems, either single detergent-like molecules or a 
dispersion of hydroxyl group containing molecules in a matrix of l,ow sol- 
ubilty parameter, in which the hydroxyl group effect on the solubility 
parameter of the solvent as a whole is suppressed or minimized by. 

4 )  Evaluate the effect of other groups having stronger hydrogen bonding 
power than aliphatic hydroxyl groups including amides, n-substituted 
amides and n-substituted guanidines. 

5) Of particular interest would be tailor-made polymers (or oligomers) of 
various silicon containing monomers and particularly the trialkyl silanes 
(as opposed to the dialkyl silicone type). 
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Table 2. EXPERIMENTAL SOLUBILITIES OF METHANE 
IN VARIOUS SOLVENTS 

Equilibrium 

at 25OC Composition 
Methane Solubility Liquid 

at 25OC and 34 
- atm Total Pressure 

34 atm CHI, Pressure, 

Faction, g CH4/g Weight 
@ Mol 

Solvent Ref . S CHI, Solvent Percent g/g 

ALIPHATIC HYDROCARBONS 

Ethane 
Propane 
n-Bu t ane 
i-Butane 
n-Pen t ane 
i-Pent ane 
neo-Pentane 
n-Hexane 
z-Methylperitane 
n-Hep t ane 
n-Oc tane 
224-Trimethl 

Pentane 
n-Decane 
Polyethylene 

38 
1,2Y3 
4Y5 
6 
7 

14 
8-11,13,35 
12 
35 
17 

15 
17 
41 

Cyclohexane 9 
CIS 1,2 Dimethyl 24 
Cyclohexane 
Trans-Cyclohexane 24 
1,3 Dimethyl 24 
Cyclohexame 
CIS l Y 4  Cyclohexane 24 
Methyl Cyclohexane 25 
Bicyclohexyl 16 
Cyclooctane 28 

Benzene 
Toluene 
o-Xylene 
m-X y 1 e ne 
p-Xylene 
D i phyny 1 

1-Me t hyl 
Methane 

Naphthalene 

9,23 
19,25,35 
26 
26 
26 

16 

31,32 

4 -05 
5.85 
6.6 
6.2 
7 .O 
6.8 
6.2 
7 03 

7.45 
7 -65 

-- 

0 -40 
0.235 
0.192 
0.205 
0.175 
0 . 177 
0.218 
0.17 
0.17 
0.16 
0.17 

0.21 0.05 0.027 
0.11 0.148 0 -063 
0.66 0.17 0.054 

0 -06 1 0.071 0.18 
0.175 0.046 0 -046 
0. 0.165 -- 
0.062 0 -206 0 -057 
0.038 
0 -038 
0.030 
0.029 

6.85 0.184 0.032 
7.7 0.20 0 -028 -- 0.005 -- 
ALICYCLIC HYDROCARBONS 

8.2 0.11 0 -024 

0.135 
0.145 

0.145 
0.147 

7 .8 0.135 
8.2 0.115 
8.5 0.094 

AROMATIC HYDROCARBONS 

9.15 0.071 0.012 
8.9 0.076 0.013 
9 00 0.085 0.014 
8 .8 0.092 
8.8 0.098 0.016 

9.1 0.06 1 

0.053 
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Table 2. EXPERIMENTAL SOLUBILITIES OF METHANE 
IN VARIOUS SOLVENTS, CON'T. 

Equilibrium 

at 25OC Composition 

@ Mol atm Total Pressure 

Methane Solubility Liquid 

34 atm CHI, Pressure, at 25OC and 34 

Faction, g CH4/g Weight 
Solvent Ref. S CHI, Solvent Percent g/g 

PERFLUOROCARBONS AND SILICONES 

(C4Fg) N 21 
C7F1$ 22 
Hexa luoro 

Benzene 23 
Octamethylcyclo 

Tetrasilane 31 
Silicone Rubber 42 

CH2Cl-CH2Cl 
CCL4 
Chlorobenzene 
CHC13 
CClZF-CClF2 

H20 
Methyl Alcohol 
Ethyl Alcohol 
Propyl Alcohol 
i-Propyl Alcohol 
n-Butyl Alcohol 
.n-Amyl Alcohol 
n-Hexyl Alcohol 
n-Heptyl Alcohol 
n-Octyl Alcohol 
n-Decyl Alcohol 
Cyclo Hexyl Alcohol 

35 

9,35 
35 
15 

5 .9 0.23 
5.7 0.28 0.016 

a .25 0.13 

5.5 0.32 0 -025 
o .oia 

CHLORINATED HYDROCARBONS 

0.029 
8.6 0.097 0.011 

9.25 0.058 0.008 
0.17 

9 05 o .06a 

ALIPHATIC ALCOHOLS 

23 .4 
14.5 
12.7 
11*9 
11.5 
11.0 
10.3 
10 .o 
9 .5 
9.3 

0.0009 
0,029 
0 ,044 
0.055 
0 -049 
0.065 
0.073 
0 -080 

0.095 

0.043 

o .oaa 

o .loa 
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Solvent 

Table 2.  EXPERIMENTAL SOLUBILITIES OF METHANE 
IN VARIOUS SOLVENTS, CON'T. 

Methane Solubility 
at 25OC 

34 atm CHI, Pressure, 
@ Mol 

Diethyl Ether 
Dioxane 
Methyl Acetate 
Ace tone 
Ethylene Oxide 
Methyl Ethyl 
Ketone 
Propylene 

Carbonat e 
Glycerol tri- 

Acetate 
Sulfur Dioxide 
cos 
Dime thy 1 

Tributyl 

cs2 

Sulfoxide 

Phosphate 

Ammonia 
Aniline 
Cyclohexyl 

Amine 
Methyl 

Pyrrolidane 
Nitrobenzene 

Faction; g CH4/g 
Ref . S CHI, Solvent 

MISCELLANEOUS OXYGEN COMPOUNDS 

9 7.45 0.154 0 -039 
9 10 .o 0.044 
9 9.5 0.066 
9 9.65 0 -063 
27 0.055 

9.3 0.06 

39 13.3 0.023 

39 

29 
21,22 10 .o 

0 -065 
0.035 
0.076 
0.044 

30 0.013 

39 0.155 

MISCELLANEOUS NITROGEN COMPOUNDS 

33 0.012 
35 11.6 0 -023 

29 8.7 0 -065 

39 0.033 
35 10 .o 0.030 
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