166 research outputs found

    Prolidase deficiency causes spontaneous T cell activation and lupus-like autoimmunity

    Get PDF
    Prolidase deficiency (PD) is a multisystem disorder caused by mutations in the PEPD gene, which encodes a ubiquitously expressed metallopeptidase essential for the hydrolysis of dipeptides containing C-terminal proline or hydroxyproline. PD typically presents in childhood with developmental delay, skin ulcers, recurrent infections, and, in some patients, autoimmune features that can mimic systemic lupus erythematosus. The basis for the autoimmune association is uncertain, but might be due to self-antigen exposure with tissue damage, or indirectly driven by chronic infection and microbial burden. In this study, we address the question of causation and show that Pepd-null mice have increased antinuclear autoantibodies and raised serum IgA, accompanied by kidney immune complex deposition, consistent with a systemic lupus erythematosus–like disease. These features are associated with an accumulation of CD4 and CD8 effector T cells in the spleen and liver. Pepd deficiency leads to spontaneous T cell activation and proliferation into the effector subset, which is cell intrinsic and independent of Ag receptor specificity or antigenic stimulation. However, an increase in KLRG1+ effector CD8 cells is not observed in mixed chimeras, in which the autoimmune phenotype is also absent. Our findings link autoimmune susceptibility in PD to spontaneous T cell dysfunction, likely to be acting in combination with immune activators that lie outside the hemopoietic system but result from the abnormal metabolism or loss of nonenzymatic prolidase function. This knowledge provides insight into the role of prolidase in the maintenance of self-tolerance and highlights the importance of treatment to control T cell activation

    Colitis in a transgenic mouse model of autoimmune uveitis may be induced by neoantigen presentation in the bowel

    Get PDF
    Undifferentiated uveitis (intraocular inflammation, IOI) is an idiopathic sight-threatening, presumed autoimmune disease, accountable for ~ 10% of all blindness in the developed world. We have investigated the association of uveitis with inflammatory bowel disease (IBD) using a mouse model of spontaneous experimental autoimmune uveoretinitis (EAU). Mice expressing the transgene (Tg) hen egg lysozyme (HEL) in the retina crossed with 3A9 mice expressing a transgenic HEL-specific TCR spontaneously develop uveoretinitis at post-partum day (P)20/21. Double transgenic (dTg TCR/HEL) mice also spontaneously develop clinical signs of colitis at ~ P30 with diarrhoea, bowel shortening, oedema and lamina propria (LP) inflammatory cell infiltration. Single (s)Tg TCR (3A9) mice also show increased histological LP cell infiltration but no bowel shortening and diarrhoea. dTg TCR/HEL mice are profoundly lymphopenic at weaning. In addition, dTg TCR/HEL mice contain myeloid cells which express MHC Class II-HEL peptide complexes (MHCII-HEL), not only in the inflamed retina but also in the colon and have the potential for antigen presentation. In this model the lymphopenia and reduction in the absolute Treg numbers in dTg TCR/HEL mice is sufficient to initiate eye disease. We suggest that cell-associated antigen released from the inflamed eye can activate colonic HEL-specific T cells which, in a microbial micro-environment, not only cause colitis but feedback to amplify IOI

    Unlocking the bottleneck in forward genetics using whole-genome sequencing and identity by descent to isolate causative mutations

    No full text
    Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.The High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics is funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC Hub grant G0900747 91070. This study was supported by Wellcome Trust Strategic Award 082030 (CCG), Wellcome Trust Studentship 094446/Z/10/Z (KRB), the Oxford NIHR Biomedical Research Centre, and the MRC Human Immunology Unit (RJC). AJR and GL were supported by Wellcome Trust grant 090532/Z/ 09/Z, CCG and AE by a Major initiative Award from the Clive and Vera Ramaciotti Foundation, and AE by an NHMRC Career Development Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8-dendritic cells require the intramembrane endopeptidase SPPL2A

    No full text
    Druggable proteins required for B lymphocyte survival and immune responses are an emerging source of new treatments for autoimmunity and lymphoid malignancy. In this study, we show that mice with an inactivating mutation in the intramembrane protease signal peptide peptidase-like 2A (SPPL2A) unexpectedly exhibit profound humoral immunodeficiency and lack mature B cell subsets, mirroring deficiency of the cytokine B cell-activating factor (BAFF). Accumulation of Sppl2a-deficient B cells was rescued by overexpression of the BAFF-induced survival protein B cell lymphoma 2 (BCL2) but not BAFF and was distinguished by low surface BAFF receptor and IgM and IgD B cell receptors. CD8-negative dendritic cells were also greatly decreased. SPPL2A deficiency blocked the proteolytic processing of CD74 MHC II invariant chain in both cell types, causing dramatic build-up of the p8 product of Cathepsin S and interfering with earlier steps in CD74 endosomal retention and processing. The findings illuminate an important role for the final step in the CD74-MHC II pathway and a new target for protease inhibitor treatment of B cell diseases.R01 AI052127/AI/NIAID NIH HHS/United States U19 AI100627/AI/NIAID NIH HHS/United States Medical Research Council/United Kingdom Wellcome Trust/United Kingdo

    Therapeutic Efficacy of Potent Neutralizing HIV-1-Specific Monoclonal Antibodies in SHIV-Infected Rhesus Monkeys

    Get PDF
    HIV-1-specific monoclonal antibodies (mAbs) with extraordinary potency and breadth have recently been described. In humanized mice, combinations of mAbs have been shown to suppress viremia, but the therapeutic potential of these mAbs has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific mAbs, as well as the single glycan-dependent mAb PGT121, resulted in a rapid and precipitous decline of plasma viremia to undetectable levels in rhesus monkeys chronically infected with the pathogenic virus SHIV-SF162P3. A single mAb infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa, and lymph nodes without the development of viral resistance. Moreover, following mAb administration, host Gag-specific T lymphocyte responses exhibited improved functionality. Virus rebounded in the majority of animals after a median of 56 days when serum mAb titers had declined to undetectable levels, although a subset of animals maintained long-term virologic control in the absence of further mAb infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific mAbs in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of mAb therapy for HIV-1 in humans

    The duration, dynamics and determinants of SARS-CoV-2 antibody responses in individual healthcare workers

    Get PDF
    BACKGROUND: SARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. METHODS: We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. RESULTS: Anti-spike IgG levels remained stably detected after a positive result, e.g., in 94% (95% credibility interval, CrI, 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post first PCR-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titre, the mean estimated antibody half-life was 85 (95%CrI, 81-90) days. Higher maximum observed anti-nucleocapsid titres were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. CONCLUSION: SARS-CoV-2 anti-nucleocapsid antibodies wane within months, and faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection

    NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease.

    Get PDF
    Genetic defects that affect intestinal epithelial barrier function can present with very early-onset inflammatory bowel disease (VEOIBD). Using whole-genome sequencing, a novel hemizygous defect in NOX1 encoding NAPDH oxidase 1 was identified in a patient with ulcerative colitis-like VEOIBD. Exome screening of 1,878 pediatric patients identified further seven male inflammatory bowel disease (IBD) patients with rare NOX1 mutations. Loss-of-function was validated in p.N122H and p.T497A, and to a lesser degree in p.Y470H, p.R287Q, p.I67M, p.Q293R as well as the previously described p.P330S, and the common NOX1 SNP p.D360N (rs34688635) variant. The missense mutation p.N122H abrogated reactive oxygen species (ROS) production in cell lines, ex vivo colonic explants, and patient-derived colonic organoid cultures. Within colonic crypts, NOX1 constitutively generates a high level of ROS in the crypt lumen. Analysis of 9,513 controls and 11,140 IBD patients of non-Jewish European ancestry did not reveal an association between p.D360N and IBD. Our data suggest that loss-of-function variants in NOX1 do not cause a Mendelian disorder of high penetrance but are a context-specific modifier. Our results implicate that variants in NOX1 change brush border ROS within colonic crypts at the interface between the epithelium and luminal microbes

    Extended 2D myotube culture recapitulates postnatal fibre type plasticity

    Get PDF
    Background: The traditional problems of performing skeletal muscle cell cultures derived from mammalian or avian species are limited myotube differentiation, and transient myotube persistence which greatly restricts the ability of myotubes to undergo phenotypic maturation. We report here on a major technical breakthrough in the establishment of a simple and effective method of extended porcine myotube cultures (beyond 50 days) in two-dimension (2D) that recapitulates key features of postnatal fibre types. Results: Primary porcine muscle satellite cells (myoblasts) were isolated from the longissimus dorsi of 4 to 6 weeks old pigs for 2D cultures to optimise myotube formation, improve surface adherence and characterise myotube maturation. Over 95 % of isolated cells were myoblasts as evidenced by the expression of Pax3 and Pax7. Our relatively simple approach, based on modifications of existing surface coating reagents (Maxgel), and of proliferation and differentiation (Ultroser G) media, typically achieved by 5 days of differentiation fusion index of around 80 % manifested in an abundance of discrete myosin heavy chain (MyHC) slow and fast myotubes. There was little deterioration in myotube viability over 50 days, and the efficiency of myotube formation was maintained over seven myoblast passages. Regular spontaneous contractions of myotubes were frequently observed throughout culture. Myotubes in extended cultures were able to undergo phenotypic adaptation in response to different culture media, including the adoption of a dominant postnatal phenotype of fast-glycolytic MyHC 2x and 2b expression by about day 20 of differentiation. Furthermore, fast-glycolytic myotubes coincided with enhanced expression of the putative porcine long intergenic non-coding RNA (linc-MYH), which has recently been shown to be a key coordinator of MyHC 2b expression in vivo. Conclusions: Our revised culture protocol allows the efficient differentiation and fusion of porcine myoblasts into myotubes and their prolonged adherence to the culture surface. Furthermore, we are able to recapitulate in 2D the maturation process of myotubes to resemble postnatal fibre types which represent a major technical advance in opening access to the in vitro study of coordinated postnatal muscle gene expression

    B Cell Activating Factor (BAFF) and T Cells Cooperate to Breach B Cell Tolerance in Lupus-Prone New Zealand Black (NZB) Mice

    Get PDF
    The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had elevated levels of anti-HEL antibodies, despite apparently normal B cell functional anergy in-vitro. NZB dTg B cells also demonstrated increased survival and abnormal entry into the follicular compartment following transfer into sHEL mice. Since this process is dependent on BAFF, BAFF serum and mRNA levels were assessed and were found to be significantly elevated in NZB dTg mice. Treatment of NZB sHEL recipient mice with TACI-Ig reduced NZB dTg B cell survival following adoptive transfer, confirming the role of BAFF in this process. Although NZB mice had modestly elevated BAFF, the enhanced NZB B cell survival response appeared to result from an altered response to BAFF. In contrast, T cell blockade had a minimal effect on B cell survival, but inhibited anti-HEL antibody production. The findings suggest that the modest BAFF elevations in NZB mice are sufficient to perturb B cell tolerance, particularly when acting in concert with B cell functional abnormalities and T cell help

    Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    Get PDF
    To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges
    corecore