379 research outputs found

    Biomass Supply from Alternative Cellulosic Crops and Crop Residues: A Preliminary Spatial Bioeconomic Modeling Approach

    Get PDF
    This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops. Three types of alternative crop management scenarios are simulated by varying crop rotation, fertilization and tillage. The cost of transporting biomass to a specific demand location is obtained using road distances and bulk shipping costs from geographic information systems. The spatial mathematical programming model predicts the supply of biomass and implied environmental consequences for a landscape managed by representative, profit maximizing farmers. The model was applied and validated for simulation of cellulosic biomass supply in a 9-county region of southern Michigan. Results for 74 cropping systems simulated across 39 sub-watersheds show that crop residues are the first types of biomass to be supplied. Corn stover and wheat straw supply start at 21/Mgand21/Mg and 27/Mg delivered prices. Perennial bioenergy crops become profitable to produce when the delivered biomass price reaches 46/Mgforswitchgrass,46/Mg for switchgrass, 118/Mg for grass mixes and $154/Mg for Miscanthus giganteus. The predicted effect of the USDA Biomass Conversion Assistance Program is to sharply reduce the minimum biomass price at which miscanthus would become profitable to supply. Compared to conventional crop production practices in the area, the EPIC-simulated environmental outcomes with crop residue removal include increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crops reduced greenhouse gas emissions and improved water quality compared to current commercial cropping systems.biomass production, bioenergy supply, biofuel policy, bioenergy, cellulosic ethanol, agro-ecosystem economics, ecosystem services economics, agro-environmental trade-off analysis, mathematical programming, EPIC, Agricultural and Food Policy, Crop Production/Industries, Environmental Economics and Policy, Land Economics/Use, Production Economics, Resource /Energy Economics and Policy, Q16, Q15, Q57, Q18,

    Climate Impacts on Agriculture: Implications for Forage and Rangeland Production

    Get PDF
    Projections of temperature and precipitation patterns across the United States during the next 50 yr anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change effects on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on responses of pastureland and rangeland species to rising atmospheric CO2 and climate change (temperature and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pastureland and rangeland species to increased [CO2] is consistent with the general responses of C3 and C4 vegetation, although exceptions exist. Both pastureland and rangeland species may experience accelerated metabolism and advanced development with rising temperature, often resulting in a longer growing season. However, soil resources will often constrain temperature effects. In general, it is expected that increases in [CO2] and precipitation will enhance rangeland net primary production (NPP) whereas increased air temperatures will either increase or decrease NPP. Much of the uncertainty in predicting how pastureland and rangeland species will respond to climate change is due to uncertainty in future projections of precipitation, both globally and regionally. This review reveals the need for comprehensive studies of climate change impacts on pastureland and rangeland ecosystems that include an assessment of the mediating effects of grazing regimes and mutualistic relationships (e.g., plant roots-nematodes; N-fixing organisms) as well as changes in water, carbon, and nutrient cycling

    Climate Impacts on Agriculture: Implications for Crop Production

    Get PDF
    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 yr present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean [Glycine max (L.) Merr.] could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency (WUE); however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population

    Regional scale cropland carbon budgets: Evaluating a geospatial agricultural modeling system using inventory data

    Get PDF
    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatiallyexplicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000e2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data and by designing more efficient parallel computing capability to quantitatively assess errors associated with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be updated and adapted for different agricultural models so long as they require similar input data, and to be linked with socio-economic models to understand the effectiveness and implications of diverse C management practices and policies

    Impact of Nitrogen Fertilization and Cropping System on Carbon Sequestration in Midwestern Mollisols

    Get PDF
    Growing interest in the potential for agricultural soils to provide a sink for atmospheric C has prompted studies of effects of management on soil organic carbon (SOC) sequestration. We analyzed the impact on SOC of four N fertilization rates (0–270 kg N ha−1) and four cropping systems: continuous corn (CC) (Zea mays L.); corn–soybean [Glycine max (L.) Merr.] (CS); corn–corn–oat–alfalfa (oat, Avena sativa L.; alfalfa, Medicago sativa L.) (CCOA), and corn–oat–alfalfa–alfalfa (COAA). Soils were sampled in 2002, Years 23 and 48 of the experiments located in northeast and north-central Iowa, respectively. The experiments were conducted using a replicated split-plot design under conventional tillage. A native prairie was sampled to provide a reference (for one site only). Cropping systems that contained alfalfa had the highest SOC stocks, whereas the CS system generally had the lowest SOC stocks. Concentrations of SOC increased significantly between 1990 and 2002 in only two of the nine systems for which historical data were available, the fertilized CC and COAA systems at one site. Soil quality indices such as particulate organic carbon (POC) were influenced by cropping system, with CS \u3c CC \u3c CCOA. In the native prairie, SOC, POC, and resistant C concentrations were 2.8, 2.6, and 3.9 times, respectively, the highest values in cropped soil, indicating that cultivated soils had not recovered to precultivation conditions. Although corn yields increased with N additions, N fertilization increased SOC stocks only in the CC system at one site. Considering the C cost for N fertilizer production, N fertilization generally had a net negative effect on C sequestration

    4EHP and GIGYF1/2 mediate translation-coupled messenger RNA decay

    Get PDF
    Current models of mRNA turnover indicate that cytoplasmic degradation is coupled with translation. However, our understanding of the molecular events that coordinate ribosome transit with the mRNA decay machinery is still limited. Here, we show that 4EHP-GIGYF1/2 complexes trigger co-translational mRNA decay. Human cells lacking these proteins accumulate mRNAs with prominent ribosome pausing. They include, among others, transcripts encoding secretory and membrane-bound proteins or tubulin subunits. In addition, 4EHP-GIGYF1/2 complexes fail to reduce mRNA levels in the absence of ribosome stalling or upon disruption of their interaction with the cap structure, DDX6, and ZNF598. We further find that co-translational binding of GIGYF1/2 to the mRNA marks transcripts with perturbed elongation to decay. Our studies reveal how a repressor complex linked to neurological disorders minimizes the protein output of a subset of mRNAs

    Framing sustainability in a telecoupled world.

    Get PDF
    Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have rarely been considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension of research on coupled human and natural systems, in which interactions occur within particular geographic locations. The telecoupling framework contains five major interrelated components, i.e., coupled human and natural systems, flows, agents, causes, and effects. We illustrate the framework using two examples of distant interactions associated with trade of agricultural commodities and invasive species, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help to analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple systems (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels
    • 

    corecore