751 research outputs found

    Particle-hole symmetry breaking in the pseudogap state of Pb0.55Bi1.5Sr1.6La0.4CuO6+d: A quantum-chemical perspective

    Full text link
    Two Bi2201 model systems are employed to demonstrate how, beside the Cu-O \sigma-band, a second band of purely O2p\pi character can be made to cross the Fermi level owing to its sensitivity to the local crystal field. This result is employed to explain the particle-hole symmetry breaking across the pseudo-gap recently reported by Shen and co-workers, see M. Hashimoto et al., Nature Physics 6, (2010) 414. Support for a two-bands-on-a-checkerboard candidate mechanism for High-Tc superconductivity is claimed.Comment: 25 pages, 8 figure

    A refined estimate for the topological degree

    Get PDF
    We sharpen an estimate of Bourgain, Brezis, and Nguyen for the topological degree of continuous maps from a sphere Sd\mathbb{S}^d into itself in the case d≥2d \ge 2. This provides the answer for d≥2d \ge 2 to a question raised by Brezis. The problem is still open for d=1d=1

    Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    Get PDF
    Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics of colloidal crystal films with single-particle resolution. We show quantitatively that colloidal epitaxy obeys the same two-dimensional island nucleation and growth laws that govern atomic epitaxy. However, we found that in colloidal epitaxy, step-edge and corner barriers that are responsible for film morphology have a diffusive origin. This diffusive mechanism suggests new routes toward controlling film morphology during epitaxy

    Absorption and optical selection rules of tunable excitons in biased bilayer graphene

    Get PDF
    Biased bilayer graphene, with its easily tunable band gap, presents itself as the ideal system to explore the excitonic effect in graphene-based systems. In this paper we study the excitonic optical response of such a system by combining a tight-binding model with the solution of the Bethe-Salpeter equation, the latter being solved in a semianalytical manner, requiring a single numerical quadrature, thus allowing for a transparent calculation. With our approach we start by analytically obtaining the optical selection rules, followed by the computation of the absorption spectrum for the case of a biased bilayer encapsulated in hexagonal boron nitride, a system which has been the subject of a recent experimental study. Excellent agreement is seen when we compare our theoretical prediction with the experimental data.N.M.R.P. acknowledges support from the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020. J.C.G.H. acknowledges the Center of Physics for a grant funded by the UIDB/04650/2020 strategic project. N.M.R.P. also acknowledges support from the European Commission through the project Graphene Driven Revolutions in ICT and Beyond (Ref. No. 881603, CORE 3), COMPETE 2020, PORTUGAL 2020, FEDER, and the FCT through projects POCI-01-0145-FEDER-028114, POCI-01-0145-FEDER-02888, and PTDC/NANOPT/29265/2017

    Void Formation and Roughening in Slow Fracture

    Full text link
    Slow crack propagation in ductile, and in certain brittle materials, appears to take place via the nucleation of voids ahead of the crack tip due to plastic yields, followed by the coalescence of these voids. Post mortem analysis of the resulting fracture surfaces of ductile and brittle materials on the μ\mum-mm and the nm scales respectively, reveals self-affine cracks with anomalous scaling exponent ζ≈0.8\zeta\approx 0.8 in 3-dimensions and ζ≈0.65\zeta\approx 0.65 in 2-dimensions. In this paper we present an analytic theory based on the method of iterated conformal maps aimed at modelling the void formation and the fracture growth, culminating in estimates of the roughening exponents in 2-dimensions. In the simplest realization of the model we allow one void ahead of the crack, and address the robustness of the roughening exponent. Next we develop the theory further, to include two voids ahead of the crack. This development necessitates generalizing the method of iterated conformal maps to include doubly connected regions (maps from the annulus rather than the unit circle). While mathematically and numerically feasible, we find that the employment of the stress field as computed from elasticity theory becomes questionable when more than one void is explicitly inserted into the material. Thus further progress in this line of research calls for improved treatment of the plastic dynamics.Comment: 15 pages, 20 figure

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping

    Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

    Full text link
    We introduce a new structure for a set of points in the plane and an angle α\alpha, which is similar in flavor to a bounded-degree MST. We name this structure α\alpha-MST. Let PP be a set of points in the plane and let 0<α≤2π0 < \alpha \le 2\pi be an angle. An α\alpha-ST of PP is a spanning tree of the complete Euclidean graph induced by PP, with the additional property that for each point p∈Pp \in P, the smallest angle around pp containing all the edges adjacent to pp is at most α\alpha. An α\alpha-MST of PP is then an α\alpha-ST of PP of minimum weight. For α<π/3\alpha < \pi/3, an α\alpha-ST does not always exist, and, for α≥π/3\alpha \ge \pi/3, it always exists. In this paper, we study the problem of computing an α\alpha-MST for several common values of α\alpha. Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point p∈Pp \in P, we associate a wedge WpW_p of angle α\alpha and apex pp. The goal is to assign an orientation and a radius rpr_p to each wedge WpW_p, such that the resulting graph is connected and its MST is an α\alpha-MST. (We draw an edge between pp and qq if p∈Wqp \in W_q, q∈Wpq \in W_p, and ∣pq∣≤rp,rq|pq| \le r_p, r_q.) Unsurprisingly, the problem of computing an α\alpha-MST is NP-hard, at least for α=π\alpha=\pi and α=2π/3\alpha=2\pi/3. We present constant-factor approximation algorithms for α=π/2,2π/3,π\alpha = \pi/2, 2\pi/3, \pi. One of our major results is a surprising theorem for α=2π/3\alpha = 2\pi/3, which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set PP of 3n3n points in the plane and any partitioning of the points into nn triplets, one can orient the wedges of each triplet {\em independently}, such that the graph induced by PP is connected. We apply the theorem to the {\em antenna conversion} problem
    • …
    corecore