92 research outputs found

    Exercise-responsive phosphoproteins in the heart.

    Get PDF
    Endurance exercise improves cardiac performance and affords protection against cardiovascular diseases but the signalling events that mediate these benefits are largely unexplored. Phosphorylation is a widely studied post-translational modification involved in intracellular signalling, and to discover novel phosphorylation events associated with exercise we have profiled the cardiac phosphoproteome response to a standardised exercise test to peak oxygen uptake (VO2peak). Male Wistar rats (346±18g) were assigned to 3 independent groups (n=6, in each) that were familiarised with running on a motorised treadmill within a metabolic chamber. Animals performed a graded exercise test and were killed either immediately (0h) after or 3h after terminating the test at a standardised physiological end point (i.e. peak oxygen uptake; VO2peak). Control rats were killed at a similar time of day to the exercised animals, to minimise possible circadian effects. Cardiac proteins were digested with trypsin and phosphopeptides were enriched by selective binding to titanium dioxide (TiO2). Phosphopeptides were analysed by liquid chromatography and high-resolution tandem mass spectrometry, and phosphopeptides were quantified by MS1 intensities and identified against the UniProt knowledgebase using MaxQuant (data are available via ProteomeXchange, ID PXD006646). The VO2peak of rats in the 0h and 3h groups was 66±5mlkg(-1)min(-1) and 69.8±5mlkg(-1)min(-1), respectively. Proteome profiling detected 1169 phosphopeptides and one-way ANOVA found 141 significant (P<0.05 with a false discovery rate of 10%) differences. Almost all (97%) of the phosphosites that were responsive to exercise are annotated in the PhosphoSitePlus database but, importantly, the majority of these have not previously been associated with the cardiac response to exercise. More than two-thirds of the exercise-responsive phosphosites were different from those identified in previous phosphoproteome profiling of the cardiac response to β1-adrenergic receptor stimulation. Moreover, we report entirely new phosphorylation sites on 4 cardiac proteins, including S81 of muscle LIM protein, and identified 7 exercise-responsive kinases, including myofibrillar protein kinases such as obscurin, titin and the striated-muscle-specific serine/threonine kinase (SPEG) that may be worthwhile targets for future investigation

    WordCloud: a Cytoscape plugin to create a visual semantic summary of networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When biological networks are studied, it is common to look for clusters, i.e. sets of nodes that are highly inter-connected. To understand the biological meaning of a cluster, the user usually has to sift through many textual annotations that are associated with biological entities.</p> <p>Findings</p> <p>The WordCloud Cytoscape plugin generates a visual summary of these annotations by displaying them as a tag cloud, where more frequent words are displayed using a larger font size. Word co-occurrence in a phrase can be visualized by arranging words in clusters or as a network.</p> <p>Conclusions</p> <p>WordCloud provides a concise visual summary of annotations which is helpful for network analysis and interpretation. WordCloud is freely available at <url>http://baderlab.org/Software/WordCloudPlugin</url></p

    Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy

    Get PDF
    Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function

    miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells

    Get PDF
    SummaryTo investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC activity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-renewal of primary LSC in vivo. Compared with prior results showing miR-126 regulation of normal hematopoietic stem cell (HSC) cycling, these functional stem effects are opposite between LSC and HSC. Combined transcriptome and proteome analysis demonstrates that miR-126 targets the PI3K/AKT/MTOR signaling pathway, preserving LSC quiescence and promoting chemotherapy resistance

    The Biomolecular Interaction Network Database and related tools 2005 update

    Get PDF
    The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues

    HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores

    Get PDF
    Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in several expert curated databases. These databases are used by researchers interested in examining detailed information on particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple experimental PPI datasets. HIPPIE's scoring scheme has been optimized by human experts and a computer algorithm to reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified confidence level

    STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Signal Transducer and Activator of Transcription 1 (STAT1) has traditionally been regarded as a transmitter of interferon signaling and a pro-apoptotic tumour suppressor. Recent data have identified new functions of STAT1 associated with tumourigenesis and resistance to genotoxic stress, including ionizing radiation (IR) and chemotherapy. To investigate the mechanisms contributing to the tumourigenic functions of STAT1, we performed a combined transcriptomic-proteomic expressional analysis and found that STAT1 is associated with regulation of energy metabolism with potential implication in the Warburg effect.</p> <p>Methods</p> <p>We generated a stable knockdown of STAT1 in the SCC61 human squamous cell carcinoma cell line, established tumour xenografts in athymic mice, and compared transcriptomic and proteomic profiles of STAT1 wild-type (WT) and knockdown (KD) untreated or irradiated (IR) tumours. Transcriptional profiling was based on Affymetrix Human GeneChip<sup>® </sup>Gene 1.0 ST microarrays. Proteomes were determined from the tandem mass spectrometry (MS/MS) data by searching against the human subset of the UniProt database. Data were analysed using Significance Analysis of Microarrays for ribonucleic acid and Visualize software for proteins. Functional analysis was performed with Ingenuity Pathway Analysis with statistical significance measured by Fisher's exact test.</p> <p>Results</p> <p>Knockdown of STAT1 led to significant growth suppression in untreated tumours and radio sensitization of irradiated tumours. These changes were accompanied by alterations in the expression of genes and proteins of glycolysis/gluconeogenesis (GG), the citrate cycle (CC) and oxidative phosphorylation (OP). Of these pathways, GG had the most concordant changes in gene and protein expression and demonstrated a STAT1-dependent expression of genes and proteins consistent with tumour-specific glycolysis. In addition, IR drastically suppressed the GG pathway in STAT1 KD tumours without significant change in STAT1 WT tumours.</p> <p>Conclusion</p> <p>Our results identify a previously uncharacterized function of STAT1 in tumours: expressional regulation of genes encoding proteins involved in glycolysis, the citrate cycle and mitochondrial oxidative phosphorylation, with predominant regulation of glycolytic genes. STAT1-dependent expressional regulation of glycolysis suggests a potential role for STAT1 as a transcriptional modulator of genes responsible for the Warburg effect.</p

    HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington’s Disease

    Get PDF
    Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.CHDI Foundation [A-2666]; Portuguese Fundacao para a Ciencia e a Tecnologia [SFRH/BPD/70718/2010, SFRH/BPD/96890/2013, IF/00881/2013, UID/BIM/04773/2013 - CBMR, UID/Multi/04326/2013 - CCMAR]info:eu-repo/semantics/publishedVersio

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/
    corecore