149 research outputs found

    Tumor‐stroma interactions differentially alter drug sensitivity based on the origin of stromal cells

    Get PDF
    Due to tumor heterogeneity, most believe that effective treatments should be tailored to the features of an individual tumor or tumor subclass. It is still unclear, however, what information should be considered for optimal disease stratification, and most prior work focuses on tumor genomics. Here, we focus on the tumor microenvironment. Using a large‐scale coculture assay optimized to measure drug‐induced cell death, we identify tumor–stroma interactions that modulate drug sensitivity. Our data show that the chemo‐insensitivity typically associated with aggressive subtypes of breast cancer is not observed if these cells are grown in 2D or 3D monoculture, but is manifested when these cells are cocultured with stromal cells, such as fibroblasts. Furthermore, we find that fibroblasts influence drug responses in two distinct and divergent manners, associated with the tissue from which the fibroblasts were harvested. These divergent phenotypes occur regardless of the drug tested and result from modulation of apoptotic priming within tumor cells. Our study highlights unexpected diversity in tumor–stroma interactions, and we reveal new principles that dictate how fibroblasts alter tumor drug responses

    Human Factors Aspects of the Transfer of Control from the Driver to the Automated Highway System

    Get PDF
    DTFH-61-92-C-00100The third in a series of experiments exploring human factors issues related to the Automated Highway System (AHS) investigated the transfer of control from the driver of a vehicle entering an automated lane to the AHS. Twenty-four drivers aged between 25 and 34 years drove in the Iowa Driving Simulator--a moving base hexapod platform containing a mid-sized sedan with a 3.35-rad (180 deg) projection screen to the front and a 1.13-rad (60 deg) screen to the rear. The experiment focused on a generic AHS configuration in which the left lane was reserved for automated vehicles, the center and right lanes were reserved for unautomated vehicles, and in which there was no transition lane and no barrier. The driver took the simulator vehicle onto a freeway, moved to the center lane, and then, after receiving an "Enter" command, drove into an automated lane and transferred control to the AHS. Then, the AHS moved the vehicle into the lead position of the string of vehicles approaching it from behind. RESULTS: The entering response time, lane-change time, entering exposure time, and string-joining time data were used to determine the minimum inter-string gap required to enable the driver's vehicle to enter the automated lane without causing a delay to the string it joins. The required minimum inter-string gap varied with the design velocity and the method of transferring control. With the partially automated transfer method, the required minimum inter-string gap time increased from 1.14 s for the 104.7-km/h (65-mi/h) design velocity, through 3.38 s for the 128.8-km/h (80-mi/h) design velocity, to 7.33 s for the 153.0-km/h (95-mi/h) design velocity. The hourly capacity when the design velocity is 104.7 km/h (65 mi/h) is likely to be four times greater than when the design velocity is 153.0 km/h (95 mi/h) (the hourly capacity for the latter would be only slightly more than the traffic flow that could be achieved without an AHS). It is not the design velocity of 104.7 km/h (65 mi/h) per se that produces the higher capacity--it is the relatively low velocity differential between the design velocity and the speed limit in the unautomated lanes. If the transfer of control from the driver to the AHS were to occur before the driver moved into the automated lane, the required minimum inter-string gap times should be reduced--a possibility that is being investigated in the next in the experimental series. No collisions occurred, suggesting that the drivers were able to join the automated lane safely--a suggestion reinforced by the responses to a questionnaire indicating that the drivers felt safe and believed they controlled the vehicle well during the entry maneuver

    Elevated acute phase proteins affect pharmacokinetics in COVID-19 trials: Lessons from the CounterCOVID - imatinib study.

    Get PDF
    This study aimed to determine whether published pharmacokinetic (PK) models can adequately predict the PK profile of imatinib in a new indication, such as coronavirus disease 2019 (COVID-19). Total (bound + unbound) and unbound imatinib plasma concentrations obtained from 134 patients with COVID-19 participating in the CounterCovid study and from an historical dataset of 20 patients with gastrointestinal stromal tumor (GIST) and 85 patients with chronic myeloid leukemia (CML) were compared. Total imatinib area under the concentration time curve (AUC), maximum concentration (C <sub>max</sub> ) and trough concentration (C <sub>trough</sub> ) were 2.32-fold (95% confidence interval [CI] 1.34-3.29), 2.31-fold (95% CI 1.33-3.29), and 2.32-fold (95% CI 1.11-3.53) lower, respectively, for patients with CML/GIST compared with patients with COVID-19, whereas unbound concentrations were comparable among groups. Inclusion of alpha1-acid glycoprotein (AAG) concentrations measured in patients with COVID-19 into a previously published model developed to predict free imatinib concentrations in patients with GIST using total imatinib and plasma AAG concentration measurements (AAG-PK-Model) gave an estimated mean (SD) prediction error (PE) of -20% (31%) for total and -7.0% (56%) for unbound concentrations. Further covariate modeling with this combined dataset showed that in addition to AAG; age, bodyweight, albumin, CRP, and intensive care unit admission were predictive of total imatinib oral clearance. In conclusion, high total and unaltered unbound concentrations of imatinib in COVID-19 compared to CML/GIST were a result of variability in acute phase proteins. This is a textbook example of how failure to take into account differences in plasma protein binding and the unbound fraction when interpreting PK of highly protein bound drugs, such as imatinib, could lead to selection of a dose with suboptimal efficacy in patients with COVID-19

    Gellan Gum Fluid Gels for Topical Administration of Diclofenac

    Get PDF
    Diclofenac topical formulations are often preferred for drug administration to patients who experience serious GIT problems. Absorption of the drug through the skin, however, can be challenging due to the natural protective feature of the stratum corneum (SC). In this article, fluid gels prepared from gellan gum were explored as a topical drug delivery vehicle. Rheological analysis of the formulations showed that it was possible to produce a topical gel with a viscosity and the mechanical strength similar to that of the commercially available Voltaren® gel using 1 % w/w of a 50:50 low acyl/high acyl (LA/HA) gellan blend. Soft-tribology was used to assess the lubrication properties of gellan fluid gels. The lubrication of the gellan gum fluid gel formulations at high rubbing speeds was similar to the lubrication of the Voltaren® gel. The use of gellan gum dramatically increased skin permeation of diclofenac when compared with the commercially available formulation and could be controlled by changing the gellan gum concentration and/or sodium ion concentration in the formulation. This study highlights the potential use of fluid gels that can be easily tuned to have physical properties suitable for topical formulations with the added advantage of increasing drug permeation

    Pemetrexed Induced Thymidylate Synthase Inhibition in Non-Small Cell Lung Cancer Patients: A Pilot Study with 3 '-Deoxy-3 '-[F-18]fluorothymidine Positron Emission Tomography

    Get PDF
    OBJECTIVES: Pemetrexed is a thymidylate synthase (TS) inhibitor and is effective in non-small cell lung cancer (NSCLC). 3'-deoxy-3'-[¹⁸F]fluorothymidine (¹⁸F-FLT), a proliferation marker, could potentially identify tumor specific TS-inhibition. The aim of this study was to investigate the effect of pemetrexed-induced TS-inhibition on ¹⁸F-FLT uptake 4 hours after pemetrexed administration in metastatic NSCLC patients. METHODS: Fourteen NSCLC patients underwent dynamic ¹⁸F-FLT positron emission tomography (PET) scans at baseline and 4 hours after the first dose of pemetrexed. Volumes of interest were defined with a 41%, 50% and 70% threshold of the maximum pixel. Kinetic analysis and simplified measures were performed. At one, two, four and six hours after pemetrexed, plasma deoxyuridine was measured as systemic indicator of TS-inhibition. Tumor response measured with response evaluation criteria in solid tumors (RECIST), time to progression (TTP) and overall survival (OS) were determined. RESULTS: Eleven patients had evaluable ¹⁸F-FLT PET scans at baseline and 4 hours after pemetrexed. Two patients had increased ¹⁸F-FLT uptake of 35% and 31% after pemetrexed, whereas two other patients had decreased uptake of 31%. In the remaining seven patients ¹⁸F-FLT uptake did not change beyond test-retest borders. In all patients deoxyuridine levels raised after administration of pemetrexed, implicating pemetrexed-induced TS-inhibition. ¹⁸F-FLT uptake in bone marrow was significantly increased 4 hours after pemetrexed administration. Six weeks after the start of treatment 5 patients had partial response, 4 stable disease and 2 progressive disease. Median TTP was 4.2 months (range 3.0-7.4 months); median OS was 13.0 months (range 5.1-30.8 months). Changes in ¹⁸F-FLT uptake were not predictive for tumor response, TTP or OS. CONCLUSIONS: Measuring TS-inhibition in a clinical setting 4 hours after pemetrexed revealed a non-systematic change in ¹⁸F-FLT uptake within the tumor. No significant association with tumor response, TTP or OS was observed

    Cellular pharmacology of multi- and duplex drugsconsisting of ethynylcytidine and 5-fluoro-2′-deoxyuridine

    Get PDF
    Prodrugs can have the advantage over parent drugs in increased activation and cellular uptake. The multidrug ETC-L-FdUrd and the duplex drug ETC-FdUrd are composed of two different monophosphate-nucleosides, 5-fluoro-2′deoxyuridine (FdUrd) and ethynylcytidine (ETC), coupled via a glycerolipid or phosphodiester, respectively. The aim of the study was to determine cytotoxicity levels and mode of drug cleavage. Moreover, we determined whether a liposomal formulation of ETC-L-FdUrd would improve cytotoxic activity and/or cleavage. Drug effects/cleavage were studied with standard radioactivity assays, HPLC and LC-MS/MS in FM3A/0 mammary cancer cells and their FdUrd resistant variants FM3A/TK−. ETC-FdUrd was active (IC50 of 2.2 and 79 nM) in FM3A/0 and TK− cells, respectively. ETC-L-FdUrd was less active (IC50: 7 nM in FM3A/0 vs 4500 nM in FM3A/TK−). Although the liposomal formulation was less active than ETC-L-FdUrd in FM3A/0 cells (IC50:19.3 nM), resistance due to thymidine kinase (TK) deficiency was greatly reduced. The prodrugs inhibited thymidylate synthase (TS) in FM3A/0 cells (80–90%), but to a lower extent in FM3A/TK− (10–50%). FdUMP was hardly detected in FM3A/TK− cells. Inhibition of the transporters and nucleotidases/phosphatases resulted in a reduction of cytotoxicity of ETC-FdUrd, indicating that this drug was cleaved outside the cells to the monophosphates, which was verified by the presence of FdUrd and ETC in the medium. ETC-L-FdUrd and the liposomal formulation were neither affected by transporter nor nucleotidase/phosphatase inhibition, indicating circumvention of active transporters. In vivo, ETC-FdUrd and ETC-L-FdURd were orally active. ETC nucleotides accumulated in both tumor and liver tissues. These formulations seem to be effective when a lipophilic linker is used combined with a liposomal formulation

    A novel approach to modelling water transport and drug diffusion through the stratum corneum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential of using skin as an alternative path for systemically administering active drugs has attracted considerable interest, since the creation of novel drugs capable of diffusing through the skin would provide a great step towards easily applicable -and more humane- therapeutic solutions. However, for drugs to be able to diffuse, they necessarily have to cross a permeability barrier: the <it>stratum corneum </it>(SC), the uppermost set of skin layers. The precise mechanism by which drugs penetrate the skin is generally thought to be diffusion of molecules through this set of layers following a "tortuous pathway" around corneocytes, i.e. impermeable dead cells.</p> <p>Results</p> <p>In this work, we simulate water transport and drug diffusion using a three-dimensional porous media model. Our numerical simulations show that diffusion takes place through the SC regardless of the direction and magnitude of the fluid pressure gradient, while the magnitude of the concentrations calculated are consistent with experimental studies.</p> <p>Conclusions</p> <p>Our results support the possibility for designing arbitrary drugs capable of diffusing through the skin, the time-delivery of which is solely restricted by their diffusion and solubility properties.</p
    corecore