205 research outputs found
A new wireless sensor interface using dual-mode radio
The integration of sensors is one of the major tasks in embedded, control and
internet of things (IoT) applications. For the integration mainly digital
interfaces are used, starting from rather simple pulse-width modulation (PWM)
interface to more complex interfaces like CAN (Controller Area Network). Even
though these interfaces are tethered by definition, a wireless realization is
highly welcome in many applications to reduce cable and connector cost,
increase the flexibility and realize new emerging applications like wireless
control systems. Currently used wireless solutions like Bluetooth,
WirelessHART or IO-Link Wireless use dedicated communication standards and
corresponding higher protocol layers to realize the wireless communication.
Due to the complexity of the communication and the protocol handling,
additional latency and jitter are introduced to the data communication that
can meet the requirements for many applications. Even though tunnelling of
other bus data like CAN data is generally also possible the latency and
jitter prevent the tunnelling from being transparent for the bus system. Therefore a new basic technology based on dual-mode
radio is used to realize a wireless communication on the physical layer only,
enabling a reliable and real-time data transfer. As this system operates on
the physical layer it is independent of any higher layers of the OSI (open systems interconnection) model.
Hence it can be used for several different communication systems to replace
the tethered physical layer. A prototype is developed and tested for
real-time wireless PWM, SENT (single-edge nibble transmission) and CAN data
transfer with very low latency and jitter.</p
Spectral analysis of the Forel-Ule ocean colour comparator scale
François Alphonse Forel (1890) and Willi Ule (1892) composed a colour comparator scale, with tints varying from indigo-blue to coca-cola brown, to quantify the colour of natural waters, like seas, lakes and rivers. For each measurement, the observer compares the colour of the water above a submersed white disc (Secchi disc) with the hand-held scale of pre-defined colours. The scale can be well reproduced from a simple recipe for twenty-one coloured chemical solutions and because the ease of its use, the Forel-Ule (FU) scale has been applied globally and intensively by oceanographers and limnologists from the year 1890. Indeed, the archived FU data belong to the oldest oceanographic data sets and do contain information on the changes in geobiophysical properties of natural waters during the last century. In this article we describe the optical properties of the FU-scale and its ability to cover the colours of natural waters, as observed by the human eye. The recipe of the scale and its reproduction is described. The spectral transmission of the tubes, with belonging chromaticity coordinates, is presented. The FU scale, in all its simplicity, is found to be an adequate ocean colour comparator scale. The scale is well characterized, is stable and observations are reproducible. This supports the idea that the large historic data base of FU measurements is coherent and well calibrated. Moreover, the scale can be coupled to contemporary multi-spectral observations with hand-held and satellite-based spectrometers
A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors
We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear
recoils using data collected in 2009 - 2010 by EDELWEISS from four germanium
detectors equipped with thermal sensors and an electrode design (ID) which
allows to efficiently reject several sources of background. The data indicate
no evidence for an exponential distribution of low-energy nuclear recoils that
could be attributed to WIMP elastic scattering after an exposure of 113 kg.d.
For WIMPs of mass 10 GeV, the observation of one event in the WIMP search
region results in a 90% CL limit of 1.0x10^-5 pb on the spin-independent
WIMP-nucleon scattering cross-section, which constrains the parameter space
associated with the findings reported by the CoGeNT, DAMA and CRESST
experiments.Comment: PRD rapid communication accepte
Muon-induced background in the EDELWEISS dark matter search
A dedicated analysis of the muon-induced background in the EDELWEISS dark
matter search has been performed on a data set acquired in 2009 and 2010. The
total muon flux underground in the Laboratoire Souterrain de Modane (LSM) was
measured to be \,muons/m/d. The
modular design of the muon-veto system allows the reconstruction of the muon
trajectory and hence the determination of the angular dependent muon flux in
LSM. The results are in good agreement with both MC simulations and earlier
measurements. Synchronization of the muon-veto system with the phonon and
ionization signals of the Ge detector array allowed identification of
muon-induced events. Rates for all muon-induced events and of WIMP-like events were extracted. After
vetoing, the remaining rate of accepted muon-induced neutrons in the
EDELWEISS-II dark matter search was determined to be at 90%\,C.L. Based on
these results, the muon-induced background expectation for an anticipated
exposure of 3000\,\kgd\ for EDELWEISS-3 is
events.Comment: 21 pages, 16 figures, Accepted for publication in Astropart. Phy
Increased searching and handling effort in tall swards lead to a Type IV functional response in small grazing herbivores
Understanding the functional response of species is important in comprehending the species’ population dynamics and the functioning of multi-species assemblages. A Type II functional response, where instantaneous intake rate increases asymptotically with sward biomass, is thought to be common in grazers. However, at tall, dense swards, food intake might decline due to mechanical limitations or if animals selectively forage on the most nutritious parts of a sward, leading to a Type IV functional response, especially for smaller herbivores. We tested the predictions that bite mass, cropping time, swallowing time and searching time increase, and bite rate decreases with increasing grass biomass for different-sized Canada geese (Branta canadensis) foraging on grass swards. Bite mass indeed showed an increasing asymptotic relationship with grass biomass. At high biomass, difficulties in handling long leaves and in locating bites were responsible for increasing cropping, swallowing, and searching times. Constant bite mass and decreasing bite rate caused the intake rate to decrease at high sward biomass after reaching an optimum, leading to a Type IV functional response. Grazer body mass affected maximum bite mass and intake rate, but did not change the shape of the functional response. As grass nutrient contents are usually highest in short swards, this Type IV functional response in geese leads to an intake rate that is maximised in these swards. The lower grass biomass at which intake rate was maximised allows resource partitioning between different-sized grazers. We argue that this Type IV functional response is of more importance than previously thought
Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach
We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range mχ∈[4,30]GeV/c2 with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from 206Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with mχ=4GeV/c2 is 1.6×10-39cm2, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15GeV/c2 the exclusion limits found with both analyses are in good agreement
Unexpected Role for Helicobacter pylori DNA Polymerase I As a Source of Genetic Variability
Helicobacter pylori, a human pathogen infecting about half of the world population, is characterised by its large intraspecies variability. Its genome plasticity has been invoked as the basis for its high adaptation capacity. Consistent with its small genome, H. pylori possesses only two bona fide DNA polymerases, Pol I and the replicative Pol III, lacking homologues of translesion synthesis DNA polymerases. Bacterial DNA polymerases I are implicated both in normal DNA replication and in DNA repair. We report that H. pylori DNA Pol I 5′- 3′ exonuclease domain is essential for viability, probably through its involvement in DNA replication. We show here that, despite the fact that it also plays crucial roles in DNA repair, Pol I contributes to genomic instability. Indeed, strains defective in the DNA polymerase activity of the protein, although sensitive to genotoxic agents, display reduced mutation frequencies. Conversely, overexpression of Pol I leads to a hypermutator phenotype. Although the purified protein displays an intrinsic fidelity during replication of undamaged DNA, it lacks a proofreading activity, allowing it to efficiently elongate mismatched primers and perform mutagenic translesion synthesis. In agreement with this finding, we show that the spontaneous mutator phenotype of a strain deficient in the removal of oxidised pyrimidines from the genome is in part dependent on the presence of an active DNA Pol I. This study provides evidence for an unexpected role of DNA polymerase I in generating genomic plasticity
Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment
The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus
interactions from its initial science run, down to cm
for the spin-independent interaction of a 36 GeV/c WIMP at 90% confidence
level. In this paper, we present a comprehensive analysis of the backgrounds
important for this result and for other upcoming physics analyses, including
neutrinoless double-beta decay searches and effective field theory
interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations
of bulk and fixed radioactive backgrounds are consistent with expectations from
the ex-situ assays. The observed background rate after WIMP search criteria
were applied was events/keV/kg/day in the
low-energy region, approximately 60 times lower than the equivalent rate
reported by the LUX experiment.Comment: 25 pages, 15 figure
A search for new physics in low-energy electron recoils from the first LZ exposure
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a
dual-phase xenon time projection chamber. We report searches for new physics
appearing through few-keV-scale electron recoils, using the experiment's first
exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be
consistent with a background-only hypothesis, and limits are set on models for
new physics including solar axion electron coupling, solar neutrino magnetic
moment and millicharge, and electron couplings to galactic axion-like particles
and hidden photons. Similar limits are set on weakly interacting massive
particle (WIMP) dark matter producing signals through ionized atomic states
from the Migdal effect.Comment: 13 pages, 10 figures. See https://tinyurl.com/LZDataReleaseRun1ER for
a data release related to this pape
- …