43,970 research outputs found
Towards an Ontology Metadata Standard
In this poster, we present (i) a proposal for a metadata standard, known as Ontology Metadata Vocabulary (OMV) which is based on discussions in the EU IST thematic network of excellence Knowledge Web1 and (ii) two complementary reference
implementations which show the benefit of such a standard in
decentralized and centralized scenarios, i.e. the Oyster P2P
system and the Onthology metadata portal
Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum
The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity
Probing the evolving massive star population in Orion with kinematic and radioactive tracers
We assemble a census of the most massive stars in Orion, then use stellar
isochrones to estimate their masses and ages, and use these results to
establish the stellar content of Orion's individual OB associations. From this,
our new population synthesis code is utilized to derive the history of the
emission of UV radiation and kinetic energy of the material ejected by the
massive stars, and also follow the ejection of the long-lived radioactive
isotopes 26Al and 60Fe. In order to estimate the precision of our method, we
compare and contrast three distinct representations of the massive stars. We
compare the expected outputs with observations of 26Al gamma-ray signal and the
extent of the Eridanus cavity. We find an integrated kinetic energy emitted by
the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent
with the energy thought to be required to create the Eridanus superbubble. We
also find good agreement between our model and the observed 26Al signal,
estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion
region. Our population synthesis approach is demonstrated for the Orion region
to reproduce three different kinds of observable outputs from massive stars in
a consistent manner: Kinetic energy as manifested in ISM excavation, ionization
as manifested in free-free emission, and nucleosynthesis ejecta as manifested
in radioactivity gamma-rays. The good match between our model and the
observables does not argue for considerable modifications of mass loss. If
clumping effects turn out to be strong, other processes would need to be
identified to compensate for their impact on massive-star outputs. Our
population synthesis analysis jointly treats kinematic output and the return of
radioactive isotopes, which proves a powerful extension of the methodology that
constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page
Quantum annealing with Jarzynski equality
We show a practical application of the Jarzynski equality in quantum
computation. Its implementation may open a way to solve combinatorial
optimization problems, minimization of a real single-valued function, cost
function, with many arguments. We consider to incorpolate the Jarzynski
equality into quantum annealing, which is one of the generic algorithms to
solve the combinatorial optimization problem. The ordinary quantum annealing
suffers from non-adiabatic transitions whose rate is characterized by the
minimum energy gap of the quantum system under
consideration. The quantum sweep speed is therefore restricted to be extremely
slow for the achievement to obtain a solution without relevant errors. However,
in our strategy shown in the present study, we find that such a difficulty
would not matter.Comment: 4 pages, to appear in Phys. Rev. Let
Modeling Partially Reliable Information Sources: A General Approach Based on Dempster-Shafer Theory
Combining testimonial reports from independent and partially reliable information sources is an important problem of uncertain reasoning. Within the framework of Dempster-Shafer theory, we propose a general model of partially reliable sources which includes several previously known results as special cases. The paper reproduces these results, gives a number of new insights, and thereby contributes to a better understanding of this important application of reasoning with uncertain and incomplete information.Articl
Optimal Vertex Cover for the Small-World Hanoi Networks
The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with
an exact renormalization group and parallel-tempering Monte Carlo simulations.
The grand canonical partition function of the equivalent hard-core repulsive
lattice-gas problem is recast first as an Ising-like canonical partition
function, which allows for a closed set of renormalization group equations. The
flow of these equations is analyzed for the limit of infinite chemical
potential, at which the vertex-cover problem is attained. The relevant fixed
point and its neighborhood are analyzed, and non-trivial results are obtained
both, for the coverage as well as for the ground state entropy density, which
indicates the complex structure of the solution space. Using special
hierarchy-dependent operators in the renormalization group and Monte-Carlo
simulations, structural details of optimal configurations are revealed. These
studies indicate that the optimal coverages (or packings) are not related by a
simple symmetry. Using a clustering analysis of the solutions obtained in the
Monte Carlo simulations, a complex solution space structure is revealed for
each system size. Nevertheless, in the thermodynamic limit, the solution
landscape is dominated by one huge set of very similar solutions.Comment: RevTex, 24 pages; many corrections in text and figures; final
version; for related information, see
http://www.physics.emory.edu/faculty/boettcher
Affinity Labelling of the Active Center of DNA-dependent RNA Polymerases within the Archaebacterial Kingdom
- …
