114 research outputs found

    Domain structure of epitaxial Co films with perpendicular anisotropy

    Full text link
    Epitaxial hcp Cobalt films with pronounced c-axis texture have been prepared by pulsed lased deposition (PLD) either directly onto Al2O3 (0001) single crystal substrates or with an intermediate Ruthenium buffer layer. The crystal structure and epitaxial growth relation was studied by XRD, pole figure measurements and reciprocal space mapping. Detailed VSM analysis shows that the perpendicular anisotropy of these highly textured Co films reaches the magnetocrystalline anisotropy of hcp-Co single crystal material. Films were prepared with thickness t of 20 nm < t < 100 nm to study the crossover from in-plane magnetization to out-of-plane magnetization in detail. The analysis of the periodic domain pattern observed by magnetic force microscopy allows to determine the critical minimum thickness below which the domains adopt a pure in-plane orientation. Above the critical thickness the width of the stripe domains is evaluated as a function of the film thickness and compared with domain theory. Especially the discrepancies at smallest film thicknesses show that the system is in an intermediate state between in-plane and out-of-plane domains, which is not described by existing analytical domain models

    The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films

    Full text link
    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45{\deg} in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for publication in Advances in Cryogenic Engineering (Materials
    • …
    corecore