The anisotropy of the critical current density Jc depends in general on both
the properties of the flux lines (such as line tension, coherence length and
penetration depth) and the properties of the defects (such as density, shape,
orientation etc.). Whereas the Jc anisotropy in microstructurally clean films
can be scaled to an effective magnetic field containing the Ginzburg-Landau
anisotropy term, it is in general not possible (or only in a limited field
range) for samples containing extended defects. Here, the Jc anisotropy of a
Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e.
grain boundaries created by 45{\deg} in-plane rotated grains, as well as
extended Fe particles is investigated. This microstructure leads to c-axis
correlated pinning, both due to the GBs and the Fe particles and manifests in a
c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from
the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at
ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full
Jc anisotropy is fitted successfully with the vortex path model. The results
are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be
good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for
publication in Advances in Cryogenic Engineering (Materials