Magnetic granularity in pulsed laser deposited YBCO films on technical templates at 5 K

Abstract

The manifestation of granularity in the superconducting properties of pulsed laser deposited YBCO films on commercially available metallic templates was investigated by scanning Hall probe microscopy at 5 K and was related to local orientation mapping of the YBCO layer. The YBCO films on stainless steel templates with a textured buffer layer of yttrium stabilized ZrO2 grown by alternating beam assisted deposition have a mean grain size of less than with a sharp texture. This results in a homogeneous trapped field profile and spatial distribution of the current density. On the other hand, YBCO films on biaxially textured NiW substrates show magnetic granularity that persists down to a temperature of 5 K and up to an applied magnetic field of 4 T. The origin of the granular field profile is directly correlated to the microstructural properties of the YBCO layer adopted from the granular NiW substrate which leads to a spatially inhomogeneous current density. Grain-to-grain in-plane tilts lead to grain boundaries that obstruct the current while out-of-plane tilts mainly affect the grain properties, resulting in areas with low . Hence, not all grain boundaries cause detrimental effects on since the orientation of individual NiW grains also contributes to observed inhomogeneity and granularity

    Similar works