7 research outputs found

    Novel Insights Into Breast Cancer Copy Number Genetic Heterogeneity Revealed by Single-Cell Genome Sequencing

    Get PDF
    Copy number alterations (CNAs) play an important role in molding the genomes of breast cancers and have been shown to be clinically useful for prognostic and therapeutic purposes. However, our knowledge of intra-tumoral genetic heterogeneity of this important class of somatic alterations is limited. Here, using single-cell sequencing, we comprehensively map out the facets of copy number alteration heterogeneity in a cohort of breast cancer tumors. Ou/var/www/html/elife/12-05-2020/backup/r analyses reveal: genetic heterogeneity of non-tumor cells (i.e. stroma) within the tumor mass; the extent to which copy number heterogeneity impacts breast cancer genomes and the importance of both the genomic location and dosage of sub-clonal events; the pervasive nature of genetic heterogeneity of chromosomal amplifications; and the association of copy number heterogeneity with clinical and biological parameters such as polyploidy and estrogen receptor negative status. Our data highlight the power of single-cell genomics in dissecting, in its many forms, intra-tumoral genetic heterogeneity of CNAs, the magnitude with which CNA heterogeneity affects the genomes of breast cancers, and the potential importance of CNA heterogeneity in phenomena such as therapeutic resistance and disease relapse

    Solid papillary breast carcinomas resembling the tall cell variant of papillary thyroid neoplasms (solid papillary carcinomas with reverse polarity) harbour recurrent mutations affecting IDH2 and PIK3CA: a validation cohort

    Get PDF
    Aims: Solid papillary breast carcinoma resembling the tall cell variant of papillary thyroid neoplasms (BPTC), also known as solid papillary carcinomawith reverse polarity, is a rare histological type of breast cancer that resembles morphologically the tall cell variant of papillary thyroid carcinoma. BPTCs are characterised by IDH2 R172 hot spot somatic mutations or mutually exclusive TET2 somatic mutations, concurrently with mutations affecting PI3K pathway-related genes. We sought to characterise their histology and investigate the frequency of IDH2 and PIK3CA mutations in an independent cohort of BPTCs, as well as in conventional solid papillary carcinomas (SPCs).Methods and results: Six BPTCs, not previously analysed molecularly, and 10 SPCs were reviewed centrally. Tumour DNA was extracted from microdissected histological sections and subjected to Sanger sequencing of the IDH2 R172 hotspot locus and exons 9 and 20 of PIK3CA. All six BPTCs were characterised by solid, papillary and follicular architecture with circumscribed, invasive tumour nodules composed of epithelial cells with reverse polarity. IDH2 mutations were identified in all six BPTCs (three R172S, two R172T and one R172G), four of which also harboured PIK3CA mutations (two H1047R, one Q546K and one Q546R). By contrast, all SPCs lacked IDH2 mutations, while one of 10 harboured a PIK3CA mutation (H1047R).Conclusion: We validated the presence of IDH2R172 hotspot mutations and PIK3CA hotspot mutations in 100% and 67% BPTCs tested, respectively,and documented absence of IDH2 R172 mutations in SPCs. These findings confirm the genotypical–phenotypical correlation reported previously in BPTC, which constitutes an entity distinct from conventional SPC

    PAX8-GLIS3 gene fusion is a pathognomonic genetic alteration of hyalinizing trabecular tumors of the thyroid.

    Get PDF
    The hyalinizing trabecular adenoma/tumor is a rare and poorly characterized follicular-derived thyroid neoplasm recently shown to harbor recurrent PAX8-GLIS1 or PAX8-GLIS3 gene fusions. Here we sought to define the repertoire of genetic alterations of hyalinizing trabecular tumors, and whether PAX8-GLIS3 fusions are pathognomonic for hyalinizing trabecular tumors. A discovery series of eight hyalinizing trabecular tumors was subjected to RNA-sequencing (n = 8), whole-exome sequencing (n = 3) or targeted massively parallel sequencing (n = 5). No recurrent somatic mutations or copy number alterations were identified in hyalinizing trabecular tumor, whereas RNA-sequencing revealed the presence of a recurrent genetic rearrangement involving PAX8 (2q14.1) and GLIS3 (9p24.2) genes in all cases. In this in-frame fusion gene, which comprised exons 1-2 of PAX8 and exons 3-11 of GLIS3, GLIS3 is likely placed under the regulation of PAX8. Reverse transcription RT-PCR and/or fluorescence in situ hybridization analyses of a validation series of 26 hyalinizing trabecular tumors revealed that the PAX8-GLIS3 gene fusion was present in all hyalinizing trabecular tumors (100%). No GLIS1 rearrangements were identified. Conversely, no PAX8-GLIS3 gene fusions were detected in a cohort of 237 control thyroid neoplasms, including 15 trabecular thyroid lesions highly resembling hyalinizing trabecular tumor from a morphological standpoint, as well as trabecular/solid follicular adenomas, solid/trabecular variants of papillary carcinoma, and Hurthle cell adenomas or carcinomas. Our data provide evidence to suggest that the PAX8-GLIS3 fusion is pathognomonic for hyalinizing trabecular tumors, and that the presence of the PAX8-GLIS3 fusion in thyroid neoplasms may be used as an ancillary marker for the diagnosis of hyalinizing trabecular tumor, thereby avoiding overtreatment in case of misdiagnoses with apparently similar malignant tumors

    Homologous recombination DNA repair defects in PALB2-associated breast cancers

    Get PDF
    Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD

    Homologous recombination DNA repair defects in PALB2-associated breast cancers

    No full text
    Abstract Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD
    corecore