114 research outputs found

    Can the Federal Baldrige Survey Measure Workforce Well-being in an Academic Health Center?

    Get PDF
    Introduction. Experts suggest health care institutions switch focusfrom measuring burnout to measuring positive organizational psychology.Concerns include burnout being a late sign of organizationaldecline. The Baldrige survey is promoted by the U.S. Departmentof Commerce to measure positive worksite conditions (e.g., workforcewellbeing of industries, including health care and education).For years, the survey has been completed by managers within organizations,but now the same survey is promoted for completion byan organization’s workforce. We tested the structure of the Baldrigesurvey when completed by an academic health care workforce. Inaddition, we tested whether the results in an academic worksite correlatewith an example metric of an organizational mission.Methods.xIn 2015, our academic health center surveyed facultyand staff with the Baldrige survey. The validity of the Baldrige wastested with confirmatory factor analyses. Within the School of Medicine,responses for the Baldrige’s concepts were correlated againsta measure of organizational outcome: graduates’ assessments ofDepartmental educational quality.Results. The structure of the Baldrige survey did not validate whenassessed by a workforce (RMSEA = 0.086; CFI = 0.829; TLI = 0.815).None of its concepts correlated with learner reported educationalquality.Conclusions. The Baldrige survey, when administered to a workforcerather than managers, did not appear to measure workforcewell-being within an academic health care center. We discourage useof the current survey for this purpose. Kans J Med 2019;12(1):4-6

    Qualification and implementation of line ratio spectroscopy on helium as plasma edge diagnostic at ASDEX Upgrade

    Get PDF
    A new thermal helium beam diagnostic has been implemented as plasma edge diagnostic at the ASDEX Upgrade (AUG) tokamak. The helium beam is built to measure the electron density ne and temperature Te simultaneously with high spatial and temporal resolution in order to investigate steady-state as well as fast transport processes in the plasma edge region. For the thermal helium beam emission line ratio spectroscopy, neutral helium is locally injected into the plasma by a piezo valve. This enabled the measurement of the line resolved emission intensities of seven He i lines for different plasma scenarios in AUG. The different line ratios can be used together with a collisional-radiative model (CRM) to reconstruct the underlying electron temperature and density. Ratios from the same spin species are used for the electron density reconstruction, whereas spin mixed ratios are sensitive to electron temperature changes. The different line ratios as well as different CRMs are tested for their suitability for diagnostic applications. Furthermore their consistency in calculating identical parameters is validated and the resulting profiles are compared to other available diagnostics at AUG.EUROfusion Consortium 633053US Department of Energy DE-SC00013911 and DE-SC001421

    I-mode pedestal relaxation events at ASDEX Upgrade

    Full text link
    The I-mode confinement regime can feature small edge temperature drops that can lead to an increase in the energy deposited onto the divertor targets. In this work, we show that these events are associated with a relaxation of both electron temperature and density edge profiles, with the largest drop found at the pedestal top position. Stability analysis of edge profiles reveals that the operational points are far from the ideal peeling-ballooning boundary. Also, we show that these events appear close to the H-mode transition in the typical I-mode operational space in ASDEX Upgrade, and that no further enhancement of energy confinement is found when they occur. Moreover, scrape-off layer transport during these events is found to be very similar to type-I ELMs, with regard to timescales (\approx 800 μ\mus), filament propagation, toroidally asymmetric energy effluxes at the midplane and asymmetry between inner and outer divertor deposited energy. In particular, the latter reveals that more energy reaches the outer divertor target. Lastly, first measurements of the divertor peak energy fluence are reported, and projections to ARC - a reactor designed to operate in I-mode - are drawn

    Lipopolysaccharide Renders Transgenic Mice Expressing Human Serum Amyloid P Component Sensitive to Shiga Toxin 2

    Get PDF
    Transgenic C57BL/6 mice expressing human serum amyloid P component (HuSAP) are resistant to Shiga toxin 2 (Stx2) at dosages that are lethal in HuSAP-negative wild-type mice. However, it is well established that Stx2 initiates extra-intestinal complications such as the haemolytic-uremic syndrome despite the presence of HuSAP in human sera. We now demonstrate that co-administering purified Escherichia coli O55 lipopolysaccharide (LPS), at a dosage of 300 ng/g body weight, to HuSAP-transgenic mice increases their susceptibility to the lethal effects of Stx2. The enhanced susceptibility to Stx2 correlated with an increased expression of genes encoding the pro-inflammatory cytokine TNFα and chemokines of the CXC and CC families in the kidneys of LPS-treated mice, 48 hours after the Stx2/LPS challenge. Co-administering the glucocorticoid dexamethasone, but not the LPS neutralizing cationic peptide LL-37, protected LPS-sensitized HuSAP-transgenic mice from lethal doses of Stx2. Dexamethasone protection was specifically associated with decreased expression of the same inflammatory mediators (CXC and CC-type chemokines and TNFα) linked to enhanced susceptibility caused by LPS. The studies reveal further details about the complex cascade of host-related events that are initiated by Stx2 as well as establish a new animal model system in which to investigate strategies for diminishing serious Stx2-mediated complications in humans infected with enterohemorrhagic E. coli strains

    Overview of the TCV tokamak experimental programme

    Get PDF
    The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with \u27small\u27 (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF
    An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts
    corecore