410 research outputs found

    The supernova-regulated ISM. II. The mean magnetic field

    Full text link
    The origin and structure of the magnetic fields in the interstellar medium of spiral galaxies is investigated with 3D, non-ideal, compressible MHD simulations, including stratification in the galactic gravity field, differential rotation and radiative cooling. A rectangular domain, 1x1x2 kpc^{3} in size, spans both sides of the galactic mid-plane. Supernova explosions drive transonic turbulence. A seed magnetic field grows exponentially to reach a statistically steady state within 1.6 Gyr. Following Germano (1992) we use volume averaging with a Gaussian kernel to separate magnetic field into a mean field and fluctuations. Such averaging does not satisfy all Reynolds rules, yet allows a formulation of mean-field theory. The mean field thus obtained varies in both space and time. Growth rates differ for the mean-field and fluctuating field and there is clear scale separation between the two elements, whose integral scales are about 0.7 kpc and 0.3 kpc, respectively.Comment: 5 pages, 10 figures, submitted to Monthly Notices Letter

    Cosmic-ray driven dynamo in galactic disks

    Get PDF
    We present new developments on the Cosmic--Ray driven, galactic dynamo, modeled by means of direct, resistive CR--MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large--scale galactic magnetic fields on galactic rotation timescales, appears as a result of galactic differential rotation, buoyancy of the cosmic ray component and resistive dissipation of small--scale turbulent magnetic fields. Our new results include demonstration of the global--galactic dynamo action driven by Cosmic Rays supplied in supernova remnants. An essential outcome of the new series of global galactic dynamo models is the equipartition of the gas turbulent energy with magnetic field energy and cosmic ray energy, in saturated states of the dynamo on large galactic scales.Comment: 6 pages, 3 figures, To be published in "Cosmic Magnetic Fields: From Planets, to Stars and Galaxies", K.G. Strassmeier, A.G. Kosovichev & J.E. Beckman, eds., Proc. IAU Symp. 259, CU

    Chandrasekhar-Kendall functions in astrophysical dynamos

    Full text link
    Some of the contributions of Chandrasekhar to the field of magnetohydrodynamics are highlighted. Particular emphasis is placed on the Chandrasekhar-Kendall functions that allow a decomposition of a vector field into right- and left-handed contributions. Magnetic energy spectra of both contributions are shown for a new set of helically forced simulations at resolutions higher than what has been available so far. For a forcing function with positive helicity, these simulations show a forward cascade of the right-handed contributions to the magnetic field and nonlocal inverse transfer for the left-handed contributions. The speed of inverse transfer is shown to decrease with increasing value of the magnetic Reynolds number.Comment: 10 pages, 5 figures, proceedings of the Chandrasekhar Centenary Conference, to be published in PRAMANA - Journal of Physic

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253. II The magnetic field

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200911698Context. There are several edge-on galaxies with a known magnetic field structure in their halo. A vertical magnetic field significantly enhances the cosmic-ray transport from the disk into the halo. This could explain the existence of the observed radio halos. Aims. We observed NGC 253 that possesses one of the brightest radio halos discovered so far. Since this galaxy is not exactly edge-on (i = 78◦) the disk magnetic field has to be modeled and subtracted from the observations in order to study the magnetic field in the halo. Methods. We used radio continuum polarimetry with the VLA in D-configuration and the Effelsberg 100-m telescope. NGC253 has a very bright nuclear point-like source, so that we had to correct for instrumental polarization. We used appropriate Effelsberg beam patterns and developed a tailored polarization calibration to cope with the off-axis location of the nucleus in the VLA primary beams. Observations at λλ6.2 cm and 3.6 cm were combined to calculate the RM distribution and to correct for Faraday rotation. Results. The large-scale magnetic field consists of a disk (r, φ) and a halo (r, z) component. The disk component can be described as an axisymmetric spiral field pointing inwards with a pitch angle of 25◦ ± 5◦ which is symmetric with respect to the plane (even parity). This field dominates in the disk, so that the observed magnetic field orientation is disk parallel at small distances from the midplane. The halo field shows a prominent X-shape centered on the nucleus similar to that of other edge-on galaxies. We propose a model where the halo field lines are along a cone with an opening angle of 90◦ ± 30◦ and are pointing away from the disk in both the northern and southern halo (even parity). We can not exclude that the field points inwards in the northern halo (odd parity). The X-shaped halo field follows the lobes seen in Hα and soft X-ray emission. Conclusions. Dynamo action and a disk wind can explain the X-shaped halo field. The nuclear starburst-driven superwind may further amplify and align the halo field by compression of the lobes of the expanding superbubbles. The disk wind is a promising candidate for the origin of the gas in the halo and for the expulsion of small-scale helical fields as requested for efficient dynamo action.Peer reviewe

    Genetic load and transgenic mitigating genes in transgenic \u3ci\u3eBrassica rapa\u3c/i\u3e (field mustard) Ă— \u3ci\u3eBrassica napus\u3c/i\u3e (oilseed rape) hybrid populations

    Get PDF
    Abstract Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed) Ă— Brassica napus (crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed Ă— transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed Ă— crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness-mitigating dwarfing gene that that is beneficial for crops but deleterious for weeds (a transgene mitigation measure), there was a dramatic decrease in the number of transgenic hybrid progeny persisting in the population. Conclusion The effects of genetic load of crop and in some situations, weed alleles might be beneficial under certain environmental conditions. However, when genetic load was directly incorporated into transgenic events, e.g., using a TM construct, the number of transgenic hybrids and persistence in weedy genomic backgrounds was significantly decreased

    Clump morphology and evolution in MHD simulations of molecular cloud formation

    Full text link
    Abridged: We study the properties of clumps formed in three-dimensional weakly magnetized magneto-hydrodynamic simulations of converging flows in the thermally bistable, warm neutral medium (WNM). We find that: (1) Similarly to the situation in the classical two-phase medium, cold, dense clumps form through dynamically-triggered thermal instability in the compressed layer between the convergent flows, and are often characterised by a sharp density jump at their boundaries though not always. (2) However, the clumps are bounded by phase-transition fronts rather than by contact discontinuities, and thus they grow in size and mass mainly by accretion of WNM material through their boundaries. (3) The clump boundaries generally consist of thin layers of thermally unstable gas, but these layers are often widened by the turbulence, and penetrate deep into the clumps. (4) The clumps are approximately in both ram and thermal pressure balance with their surroundings, a condition which causes their internal Mach numbers to be comparable to the bulk Mach number of the colliding WNM flows. (5) The clumps typically have mean temperatures 20 < T < 50 K, corresponding to the wide range of densities they contain (20 < n < 5000 pcc) under a nearly-isothermal equation of state. (6) The turbulent ram pressure fluctuations of the WNM induce density fluctuations that then serve as seeds for local gravitational collapse within the clumps. (7) The velocity and magnetic fields tend to be aligned with each other within the clumps, although both are significantly fluctuating, suggesting that the velocity tends to stretch and align the magnetic field with it. (8) The typical mean field strength in the clumps is a few times larger than that in the WNM. (9) The magnetic field strength has a mean value of B ~ 6 mu G ...Comment: substantially revised version, accepted by MNRAS, 13 pages, 14 figures, high resolution version: http://www.ita.uni-heidelberg.de/~banerjee/publications/MC_Formation_Paper2.pd

    Molecular Strategies for Gene Containment in Transgenic Crops

    Get PDF
    The potential of genetically modified (GM) crops to transfer foreign genes through pollen to related plant species has been cited as an environmental concern. Until more is known concerning the environmental impact of novel genes on indigenous crops and weeds, practical and regulatory considerations will likely require the adoption of gene-containment approaches for future generations of GM crops. Most molecular approaches with potential for controlling gene flow among crops and weeds have thus far focused on maternal inheritance, male sterility, and seed sterility. Several other containment strategies may also prove useful in restricting gene flow, including apomixis (vegetative propagation and asexual seed formation), cleistogamy (self-fertilization without opening of the flower), genome incompatibility, chemical induction/deletion of transgenes, fruit-specific excision of transgenes, and transgenic mitigation (transgenes that compromise fitness in the hybrid). As yet, however, no strategy has proved broadly applicable to all crop species, and a combination of approaches may prove most effective for engineering the next generation of GM crops
    • …
    corecore