1,403 research outputs found

    Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes

    Full text link
    We investigate hole transport in polymer light-emitting-diodes in which the emissive layer is made of liquid-crystalline polymer chains aligned perpendicular to the direction of transport. Calculations of the current as a function of time via a random-walk model show excellent qualitative agreement with experiments conducted on electroluminescent polyfluorene demonstrating non-dispersive hole transport. The current exhibits a constant plateau as the charge carriers move with a time-independent drift velocity, followed by a long tail when they reach the collecting electrode. Variation of the parameters within the model allows the investigation of the transition from non-dispersive to dispersive transport in highly aligned polymers. It turns out that large inter-chain hopping is required for non-dispersive hole transport and that structural disorder obstructs the propagation of holes through the polymer film.Comment: 4 pages, 5 figure

    Water-gated transistor using ion exchange resin for potentiometric fluoride sensing

    Get PDF
    We introduce fluoride-selective anion exchange resin sorbents as sensitisers into membranes for water-gated field effect transistors (WGTFTs). Sorbents were prepared via metal (La or Al)-loading of a commercial macroporous aminophosphonic acid resin, PurometTM MTS9501, and were filled into a plasticised poly(vinyl chloride) (PVC) phase transfer membrane. We found a potentiometric response (membrane potential leading to WGTFT threshold shift) to fluoride following a Langmuir–Freundlich (LF) adsorption isotherm with saturated membrane potential up to ~480 mV, extremely low characteristic concentration c1/2 = 1/K, and picomolar limit of detection (LoD), even though ion exchange did not build up charge on the resin. La-loading gave a superior response compared to Al-loading. Membrane potential characteristics were distinctly different from charge accumulating sensitisers (e.g., organic macrocycles) but similar to the Cs+ (cation) selective ion-exchanging zeolite mineral ‘mordenite’. We propose a mechanism for the observed threshold shift and investigate interference from co-solutes. Strong interference from carbonate was brought under control by ‘diluting’ metal loading in the resin. This work sets a template for future studies using an entirely new ‘family’ of sensitisers in applications where very low limit of detection is essential such as for ions of arsenic, mercury, copper, palladium, and gold

    Including a Cold Pool Representation in a Convection Parameterization and Simulating Its Impacts on the Spatial and Temporal Variability of the Precipitation in the NASA GEOS GCM

    Get PDF
    We developed and implemented a simple representation of a cold pool in the Grell-Freitas (GF) convection parameterization. The cold pool parameterization is based on the observation that convective-scale downdrafts produce a local deficit of the moist static energy (MSE). This information is advected and becoming downwind available to trigger and intensify new convection. The cold pool is dissipated by a simple exponential decay using a lifetime of a few hours, or by interacting with the underneath surface by exchanging latent and sensible heat fluxes. Preliminary results show some improvement of the simulation of the diurnal cycle of the precipitation over the land, mainly during the nighttime

    PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models

    Get PDF
    The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a <i>namelist</i> allowing the user to choose the type of emissions and the databases
    • …
    corecore