



# **Cooler City – Cleaner City?**

Secondary impacts of urban heat island mitigation strategies on urban air quality

Joachim Fallmann<sup>1</sup>, Stefan Emeis<sup>1</sup>, Renate Forkel<sup>1</sup>, Georg Grell<sup>2</sup> Contact: joachim.fallmann@kit.edu

# STUTTGART 😽

1 Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany 2 NOAA Earth System Research Laboratory (ESRL), Global Systems Division (GSD), 325 Broadway Boulder, CO 80305-3328, USA



## The Urban Heat island

• The tendency for an urbanized area to remain significantly warmer than its rural surroundings (Oke 1982)

## **UHI mitigation scenarios**

- Urban planning strategies:
  - effect of white roofs by increasing the albedo from 0.2
- Additional heat sources, roughness effects and albedo of urban surfaces 'design' specific atmospheric dynamics → urban-rural circulation patterns
- Regional secondary circulation patterns  $\rightarrow$  transport of rural air pollutants (e.g. BVOCs) into city  $\rightarrow$  reaction with urban pollutants
- Specific urban planning strategies can reduce negative effects (Taha 1997)

to 0.7 (Albedo)

- replace urban surface by natural vegetation (grass) one park of 20 km<sup>2</sup> (Central Park) and several parks of the same accumulated size (many parks)
- decrease building density by 20%



#### of the urban temperature 0 5 10 20 30 .Corine' landuse Reduction Dryland Cropland and Pasture Irrigated Cropland and Pasture ooded Wetland Mixed Cropland parsely Vegetated, Barrer ligh Intensity Residential eciduous Broadleaf Forres Low Intensity Residential Evergreen Needleleaf Forrest Industrial/ Commercial Mixed Forrest

Fig. 1: WRF-Chem domain and map of land cover (left); schematic image of two WRF urban canopy models and evaluation of temperature (right)



Fig. 2: Development of 2m potential temperature over cross section (left) and for the urban area of Stuttgart (right) August 13<sup>th</sup> 2003 8 pm



### Urbanization of a mesoscale model

#### **Chemical modelling (WRF-Chem)**



Fig. 4: WRF-Chem domain and map of NO emissions

Grell Devenyi

#### Tab. 1: WRF-Chem setting

cumulus

| Parameter/Scheme         | Specification     | Parameter/Scheme   | Specification       | Parameter/Scheme    | Specification       |
|--------------------------|-------------------|--------------------|---------------------|---------------------|---------------------|
| geographical input data  | 1km USGS land use | vertical layers    | 36                  | urbanization scheme | BEP (Martilli 2002) |
| dx, dy                   | 3km               | time frame         | 8/9 - 8/18/03       | land surface model  | Noah LSM            |
| west-east [grid cells]   | 200               | lowest model level | 11m                 | chamical antion     | RADM2,              |
| south-north [grid cells] | 150               | meteorological BC  | 0.5 Deg ERA-Interim | chemical option     | MADE/SORGAM         |
| Parameter/Scheme         | Specification     | Parameter/Scheme   | Specification       | Parameter/Scheme    | Specification       |
| longwave                 | RRTMG             | microphysics       | Lin et al.          | biochemistry        | MEGAN global data   |
| shortwave                | RRTMG             | emission inventory | 7km MACC 2006       | photolysis scheme   | FastJ               |

MOZART global data

Evaluation

chemical boundary





Fig. 6: Mean Difference between control- and scenario run [ppb] for modelling period for carbon monoxide (left), ozone (middle) and difference in peak ozone concentration at 1500 h (right)





Fig. 7: Diurnal cycle of CO concentration for 3 scenarios and correlation between TKE and temperature/CO concentration at the lowest model level



Fig. 8: Diurnal cycle of O3 for 3 scenarios (top), correlation of temperature and O3 (middle), correlation between NO and O3 in the lowest model level (bottom)



Fig. 9: Diurnal cycle of O3 for 3 scenarios (top), diurnal cycle of reflected SW radiation (middle), correlation between reflected SW and photolysis rate in the lowest model level (bottom)

## 5. Conclusion

- UHI mitigation strategies generate negative effects on primary and some secondary pollutants
- Reduced temperature leads to a reduction of turbulence  $\rightarrow$  increase of primary pollutants
- Reduced temperature leads to a reduction of chemical reactivity  $\rightarrow$  decrease of ozone
- Higher **albedo** leads to an increased amount of reflected SW radiation → **increase of peak ozone**

#### References

**EPA 2013**. Measuring Heat Islands. Accessed at: http://www.epa.gov/heatisland/about/measuring.htm, 07/22/2014; **Oke, T.R**. 1982a. The energetic basis of the urban heat island. *Quarterly Journal of the Royal Meteorological Society*, 108, (455) 1-24 **Taha, H**. 1997b. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. *Energy and Buildings*, 25, (2) 99-103;

Kusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. 2001. A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer and Slab Models. *Boundary-Layer Meteorology*, 101, (3) 329-358;

Martilli, A., Clappier, A., & Rotach, M. 2002. An Urban Surface Exchange Parameterization for Mesoscale Models. *Boundary-Layer* Meteorology, 104, (2) 261-304

**Fallmann, J.,** Emeis, S., & Suppan, P. 2014. Mitigation of urban heat stress - a modelling case study for the area of Stuttgart. DIE ERDE - Journal of the Geographical Society of Berlin, 144, (3-4) 202-216



