3,874 research outputs found

    Modern Design of Resonant Edge-Slot Array Antennas

    Get PDF
    Resonant edge-slot (slotted-waveguide) array antennas can now be designed very accurately following a modern computational approach like that followed for some other microwave components. This modern approach makes it possible to design superior antennas at lower cost than was previously possible. Heretofore, the physical and engineering knowledge of resonant edge-slot array antennas had remained immature since they were introduced during World War II. This is because despite their mechanical simplicity, high reliability, and potential for operation with high efficiency, the electromagnetic behavior of resonant edge-slot antennas is very complex. Because engineering design formulas and curves for such antennas are not available in the open literature, designers have been forced to implement iterative processes of fabricating and testing multiple prototypes to derive design databases, each unique for a specific combination of operating frequency and set of waveguide tube dimensions. The expensive, time-consuming nature of these processes has inhibited the use of resonant edge-slot antennas. The present modern approach reduces costs by making it unnecessary to build and test multiple prototypes. As an additional benefit, this approach affords a capability to design an array of slots having different dimensions to taper the antenna illumination to reduce the amplitudes of unwanted side lobes. The heart of the modern approach is the use of the latest commercially available microwave-design software, which implements finite-element models of electromagnetic fields in and around waveguides, antenna elements, and similar components. Instead of building and testing prototypes, one builds a database and constructs design curves from the results of computational simulations for sets of design parameters. The figure shows a resonant edge-slot antenna designed following this approach. Intended for use as part of a radiometer operating at a frequency of 10.7 GHz, this antenna was fabricated from dimensions defined exclusively by results of computational simulations. The final design was found to be well optimized and to yield performance exceeding that initially required

    Translating expert system rules into Ada code with validation and verification

    Get PDF
    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system

    Accessing monomers, surfactants, and the queen bee substance by acrylate cross-metathesis of long-chain alkenones

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Journal of the American Oil Chemists' Society 94 (2017): 831-840, doi: 10.1007/s11746-017-2997-8.Polyunsaturated long-chain alkenones are a unique class of lipids biosynthesized in significant quantities (up to 20% of cell carbon) by several algae including the industrially grown marine microalgae Isochrysis. Alkenone structures are characterized by a long linear carbon-chain (35-40 carbons) with one to four trans-double bonds and terminating in a methyl or ethyl ketone. Alkenones were extracted and isolated from commercially obtained Isochrysis biomass and then subjected to cross-metathesis (CM) with methyl acrylate or acrylic acid using the Hoveyda-Grubbs metathesis initiator. Within 1 h at room temperature alkenones were consumed, however complete fragmentation (i.e. conversion to the smallest subunits by double bond cleavage) required up to 16 h. Analysis of the reaction mixture by gas chromatography and comprehensive two-dimensional gas chromatography revealed a predictable product mixture consisting primarily of long-chain (mostly C17) acids (or methyl esters from CM with methyl acrylate) and diacids (or diesters), along with smaller amounts (~5%) of the honey bee “queen substance” (E)-9-oxo-decenoic acid. Together, these compounds comprise a diverse mixture of valuable chemicals that includes surfactants, monomers, and an agriculturally relevant bee pheromone.This work was supported by the National Science Foundation (CHE- 1151492) and through a private donation from friends of WHOI

    Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 122 (2017): 1371–1384, doi:10.1002/2017JG003780.Integrating spatial heterogeneity into assessments of salt marsh biogeochemistry is becoming increasingly important because disturbances that reduce plant productivity and soil drainage may contribute to an expansion of shallow ponds. These permanently inundated and sometimes prominent landscape features can exist for decades, yet little is known about pond biogeochemistry or their role in marsh ecosystem functioning. We characterized three ponds in a temperate salt marsh (MA, USA) over alternating periods of tidal isolation and flushing, during summer and fall, by evaluating the composition of plant communities and organic matter pools and measuring surface water oxygen, temperature, and conductivity. The ponds were located in the high marsh and had similar depths, temperatures, and salinities. Despite this, they had different levels of suspended particulate, dissolved, and sediment organic matter and abundances of phytoplankton, macroalgae, and Ruppia maritima. Differences in plant communities were reflected in pond metabolism rates, which ranged from autotrophic to heterotrophic. Integrating ponds into landcover-based estimates of marsh metabolism resulted in slower rates of net production (−8.1 ± 0.3 to −15.7 ± 0.9%) and respiration (−2.9 ± 0.5 to −10.0 ± 0.4%), compared to rates based on emergent grasses alone. Seasonality had a greater effect on pond water chemistry, organic matter pools, and algal abundances than tidal connectivity. Alternating stretches of tidal isolation and flushing did not affect pond salinities or algal communities, suggesting that exchange between ponds and nearby creeks was limited. Overall, we found that ponds are heterogeneous habitats and future expansion could reduce landscape connectivity and the ability of marshes to capture and store carbon.National Science Foundation Grant Number: OCE1233678; PIE-LTER Grant Number: OCE1238212; TIDE Grant Number: OCE13544942017-12-1

    Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

    Get PDF
    Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry

    Get PDF
    Magnetic resonance imaging (MRI) is a widely used biomedical imaging modality that derives much of its contrast from microscale magnetic field gradients in biological tissues. However, the connection between these sub-voxel field patterns and MRI contrast has not been studied experimentally. Here, we describe a new method to map subcellular magnetic fields in mammalian cells and tissues using nitrogen vacancy diamond magnetometry and connect these maps to voxel-scale MRI contrast, providing insights for in vivo imaging and contrast agent design

    Mirror Mirror on the Wall, Which Is the Most Convincing of Them All? Exploring Anti-Domestic Violence Posters.

    Get PDF
    Although domestic abuse of women by men has received significant media, police, and research attention, domestic violence directed toward men has been marginalized across the board and is still rarely treated seriously. The purpose of this research, then, is to examine and compare different anti-domestic violence messages in which the abuser's gender is not always clear. In Study 1, 200 U.K. participants (100 females and 100 males, aged 18-67, M = 28.98, SD = 9.613) evaluated posters that varied across three levels; in that the subject (male or female) was depicted as being silenced, bruised, or experiencing live abuse. The results showed that the posters featuring female victims were all rated as more effective than posters showing male victims. In Study 2, 140 different U.K. participants (95 females; 45 males) aged 18 to 59 (M = 27.27, SD = 10.662) evaluated the cartoon facial images of Disney characters who had been altered to look like victims of violence and real-life corresponding photos of human models. The results showed that the realistic posters were found to be more believable, emotional, and effective than the cartoons. The implications of such perceptions are discussed
    corecore