125 research outputs found

    Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5

    Get PDF
    The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA

    Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus

    Get PDF
    Background and Aims: The aim of this study was to determine whether expression of hepatitis C virus proteins alters hepatic morphology or function in the absence of inflammation. Methods: Transgenic C57BL/6 mice with liver-specific expression of RNA encoding the complete viral polyprotein (FL-N transgene) or viral structural proteins (S-N transgene) were compared with nontransgenic littermates for altered liver morphology and function. Results: FL-N transcripts were detectable only by reverse-transcription polymerase chain reaction, and S-N transcripts were identified in Northern blots. The abundance of viral proteins was sufficient for detection only in S-N transgenic animals. There was no inflammation in transgenic livers, but mice expressing either transgene developed age-related hepatic steatosis that was more severe in males. Apoptotic or proliferating hepatocytes were not significantly increased. Hepatocellular adenoma or carcinoma developed in older male animals expressing either transgene, but their incidence reached statistical significance only in FL-N animals. Neither was ever observed in age-matched nontransgenic mice. Conclusions: Constitutive expression of viral proteins leads to common pathologic features of hepatitis C in the absence of specific anti-viral immune responses. Expression of the structural proteins enhances a low background of steatosis in C57BL/6 mice, while additional low level expression of nonstructural proteins increases the risk of cancer

    Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity

    Get PDF
    Positive-strand RNA (+RNA) viruses rearrange cellular membranes during replication, possibly in order to concentrate and arrange viral replication machinery for efficient viral RNA synthesis. Our previous work showed that in addition to the conserved coronavirus double membrane vesicles (DMVs), Beau-R, an apathogenic strain of avian Gammacoronavirus infectious bronchitis virus (IBV), induces regions of ER that are zippered together and tethered open-necked double membrane spherules that resemble replication organelles induced by other +RNA viruses. Here we compared structures induced by Beau-R with the pathogenic lab strain M41 to determine whether membrane rearrangements are strain dependent. Interestingly, M41 was found to have a low spherule phenotype. We then compared a panel of pathogenic, mild and attenuated IBV strains in ex vivo tracheal organ culture (TOC). Although the low spherule phenotype of M41 was conserved in TOCs, each of the other tested IBV strains produced DMVs, zippered ER and spherules. Furthermore, there was a significant correlation for the presence of DMVs with spherules, suggesting that these structures are spatially and temporally linked. Our data indicate that virus induced membrane rearrangements are fundamentally linked to the viral replicative machinery. However, coronavirus replicative apparatus clearly has the plasticity to function in different structural contexts

    Impairment of germline transmission after blastocyst injection with murine embryonic stem cells cultured with mouse hepatitis virus and mouse minute virus

    Get PDF
    The aim of this study was to determine the susceptibility of murine embryonic stem (mESCs) to mouse hepatitis virus (MHV-A59) and mouse minute virus (MMVp) and the effect of these viruses on germline transmission (GLT) and the serological status of recipients and pups. When recipients received 10 blastocysts, each injected with 100 TCID50 MHV-A59, three out of five recipients and four out of 14 pups from three litters became seropositive. When blastocysts were injected with 10−5 TCID50 MMVp, all four recipients and 14 pups from four litters remained seronegative. The mESCs replicated MHV-A59 but not MMVp, MHV-A59 being cytolytic for mESCs. Exposure of mESCs to the viruses over four to five passages but not for 6 h affected GLT. Recipients were seropositive for MHV-A59 but not for MMVp when mESCs were cultured with the virus over four or five passages. The data show that GLT is affected by virus-contaminated mESCs

    Ultrastructural Characterization of SARS Coronavirus

    Get PDF
    Severe acute respiratory syndrome (SARS) was first described during a 2002–2003 global outbreak of severe pneumonia associated with human deaths and person-to-person disease transmission. The etiologic agent was initially identified as a coronavirus by thin-section electron microscopic examination of a virus isolate. Virions were spherical, 78 nm in mean diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Herein, we show that infection with the SARS-associated coronavirus resulted in distinct ultrastructural features: double-membrane vesicles, nucleocapsid inclusions, and large granular areas of cytoplasm. These three structures and the coronavirus particles were shown to be positive for viral proteins and RNA by using ultrastructural immunogold and in situ hybridization assays. In addition, ultrastructural examination of a bronchiolar lavage specimen from a SARS patient showed numerous coronavirus-infected cells with features similar to those in infected culture cells. Electron microscopic studies were critical in identifying the etiologic agent of the SARS outbreak and in guiding subsequent laboratory and epidemiologic investigations

    Production of Infectious Genotype 1b Virus Particles in Cell Culture and Impairment by Replication Enhancing Mutations

    Get PDF
    With the advent of subgenomic hepatitis C virus (HCV) replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs), previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A), but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I) as well as NS5A (S2204R), whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes

    An Integrated Transcriptomic and Meta-Analysis of Hepatoma Cells Reveals Factors That Influence Susceptibility to HCV Infection

    Get PDF
    Hepatitis C virus (HCV) is a global problem. To better understand HCV infection researchers employ in vitro HCV cell-culture (HCVcc) systems that use Huh-7 derived hepatoma cells that are particularly permissive to HCV infection. A variety of hyper-permissive cells have been subcloned for this purpose. In addition, subclones of Huh-7 which have evolved resistance to HCV are available. However, the mechanisms of susceptibility or resistance to infection among these cells have not been fully determined. In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant to HCV infection we performed genome-wide expression analyses of six Huh-7 derived cell cultures that have different levels of permissiveness to infection. A great number of genes, representing a wide spectrum of functions are differentially expressed between cells. To focus our investigation, we identify host proteins from HCV replicase complexes, perform gene expression analysis of three HCV infected cells and conduct a detailed analysis of differentially expressed host factors by integrating a variety of data sources. Our results demonstrate that changes relating to susceptibility to HCV infection in hepatoma cells are linked to the innate immune response, secreted signal peptides and host factors that have a role in virus entry and replication. This work identifies both known and novel host factors that may influence HCV infection. Our findings build upon current knowledge of the complex interplay between HCV and the host cell, which could aid development of new antiviral strategies

    Regulation of Hepatitis C Virion Production via Phosphorylation of the NS5A Protein

    Get PDF
    Hepatitis C virus (HCV) is a significant pathogen, infecting some 170 million people worldwide. Persistent virus infection often leads to cirrhosis and liver cancer. In the infected cell many RNA directed processes must occur to maintain and spread infection. Viral genomic RNA is constantly replicating, serving as template for translation, and being packaged into new virus particles; processes that cannot occur simultaneously. Little is known about the regulation of these events. The viral NS5A phosphoprotein has been proposed as a regulator of events in the HCV life cycle for years, but the details have remained enigmatic. NS5A is a three-domain protein and the requirement of domains I and II for RNA replication is well documented. NS5A domain III is not required for RNA replication, and the function of this region in the HCV lifecycle is unknown. We have identified a small deletion in domain III that disrupts the production of infectious virus particles without altering the efficiency of HCV RNA replication. This deletion disrupts virus production at an early stage of assembly, as no intracellular virus is generated and no viral RNA and nucleocapsid protein are released from cells. Genetic mapping has indicated a single serine residue within the deletion is responsible for the observed phenotype. This serine residue lies within a casein kinase II consensus motif, and mutations that mimic phosphorylation suggest that phosphorylation at this position regulates the production of infectious virus. We have shown by genetic silencing and chemical inhibition experiments that NS5A requires casein kinase II phosphorylation at this position for virion production. A mutation that mimics phosphorylation at this position is insensitive to these manipulations of casein kinase II activity. These data provide the first evidence for a function of the domain III of NS5A and implicate NS5A as an important regulator of the RNA replication and virion assembly of HCV. The ability to uncouple virus production from RNA replication, as described herein, may be useful in understanding HCV assembly and may be therapeutically important
    corecore