14,883 research outputs found

    Computational modelling and experimental characterisation of heterogeneous materials

    Get PDF
    Heterogeneous materials can exhibit behaviour under load that cannot be described by classical continuum elasticity. Beams in bending can show a relative stiffening as the beam depth tends to zero, a size effect. Size effects are recognised in higher order continuum elastic theories such as micropolar elasticity. The drawback of higher order theories is the requirement of addition constitutive relations and associated properties that are often difficult to establish experimentally. Furthermore the finite element method, of great benefit in classical elasticity, has shown limitations when applied to micropolar elasticity. The determination of additional constitutive properties and the computational modelling of micropolar elasticity will be discussed in the context of a model heterogeneous material loaded in simple 3 point bending. The model material was created by drilling holes in aluminium bar in a regular pattern, with the hole axis normal to the plane of bending. The bending tests show that a size effect is present. These results are compared against modelling the detailed beam geometries in the finite element package ANSYS, which again shows the size effect. These two bending test are used to extract the additional micropolar elastic material properties. A comparison is then made against analytical solutions,numerical solutions using a micropolar beam finite element and a micropolar plane stress control volume method.It will be shown that the need for extensive experimental testing to determine the additional constitutive properties may not be necessary with the appropriate use of numerical methods

    Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy

    Get PDF
    Mesenchymal stem cells (MSCs) are among the most frequently used cell type for regenerative medicine. A large number of studies have shown the beneficial effects of MSC-based therapies to treat different pathologies, including neurological disorders, cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic potential of MSCs in cancer is still controversial. While some studies indicate that MSCs may contribute to cancer pathogenesis, emerging data reported the suppressive effects of MSCs on cancer cells. Because of this reality, a sustained effort to understand when MSCs promote or suppress tumor development is needed before planning a MSC-based therapy for cancer. Herein, we provide an overview on the therapeutic application of MSCs for regenerative medicine and the processes that orchestrates tissue repair, with a special emphasis placed on cancer, including central nervous system tumors. Furthermore, we will discuss the current evidence regarding the double-edged sword of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer agent delivery systems.Junta de Andalucía PI-0272-2017Ministerio de Ciencia, Innovación y Universdad CD16/00118, CP19/00046, PI16/00259, BFU2017-83588-P, CP14/00105, PI18/01590, PI17/02104, PIC18/0010, IC19/0052Juvenile Diabetes Research Foundation (USA) 2-SRA-2019-837-S-BFundación Española para la Ciencia y la Tecnología 2018-00023

    Waveguide QED: Many-Body Bound State Effects on Coherent and Fock State Scattering from a Two-Level System

    Get PDF
    Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multi-photon bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock and coherent state wavepackets, especially in the intermediate coupling strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light.Comment: 10 page

    Total integrated dose testing of solid-state scientific CD4011, CD4013, and CD4060 devices by irradiation with CO-60 gamma rays

    Get PDF
    The total integrated dose response of three CMOS devices manufactured by Solid State Scientific has been measured using CO-60 gamma rays. Key parameter measurements were made and compared for each device type. The data show that the CD4011, CD4013, and CD4060 produced by this manufacturers should not be used in any environments where radiation levels might exceed 1,000 rad(Si)

    Avionics architecture studies for the entry research vehicle

    Get PDF
    This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan

    Total-dose radiation effects data for semiconductor devices: 1985 supplement, volume 1

    Get PDF
    Steady-state, total-dose radiation test data are provided, in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 provides total-dose radiation test data on integrated circuits. Volume 1 of this 1985 Supplement contains new total-dose radiation test data generated since the August 1, 1981 release date of the original Volume 1. Publication of Volume 2 of the 1985 Supplement will follow that of Volume 1 by approximately three months

    Blade scale effects of tip leakage

    Get PDF
    October 1990Includes bibliographical references (leaves 43-44)The effects of blade-tip leakage in a turbine are investigated by modeling the stage as an incomplete actuator disk. It is found that the spanwise flow redistribution due to the gap is such as to produce a uniform unloading of the blades, despite the very concentrated leakage. Partial lift retention at the blade tip is accounted for based on a leakage jet-free stream collision model which successfully predicts the roll-up of the leakage flow. The predicted efficiency loss due to the gap correlates well with experimental data
    corecore