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ABSTRACT

The effects of blade-tip leakage in a turbine are investigated by

modeling the stage as an incomplete actuator disk. It is found that the

spanwise flow redistribution due to the gap is such as to produce a uniform

unloading of the blades, despite the very concentrated leakage. Partial lift

retention at the blade tip is accounted for based on a leakage jet-free stream

collision model which successfully predicts the roll-up of the leakage flow.

The predicted efficiency loss due to the gap correlates well with experimental

data.
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1. Introduction

The effects of the finite gap at the tip of the blades of various

kinds of turbomachinery has long been a topic of study, both

theoretical and experimental, motivated largely by its strong impact

on stage performance. An additional motivation arises, in our case,

from the role of blade-tip losses in the generation of de-stabilizing cross

forces on turbine disks. The mechanism for these forces, as first

proposed by Alford(l) and Thomas( 2 ), is depicted in Fig. 1. It is an

empirical observation that the efficiency of a turbine decreases more or

less linearly with the ratio of tip gap to blade height:

H (1)

where p is a numerical factor of order 1-2. Re-writing in terms of the

force f per unit azimuthal length,

f - fo _
fllDEA fjj)EI H (2)

If a turbine disk with mean gap 8 is offset by ex in the transverse Ox

direction, then, measuring azimuth 0 from the point where the gap is

maximum,

6 (0) = 8 - ex cos 0 (3)

We can now project all forces in the OY direction, (perpendicular to the

offset), to obtain fy = f cos 0 per unit length, for a total cross-force

FY j fy R dO. Using Eqs. (2) and (3),

0

Fy =ex fiDEA nRH
or, noting that the ideal torque is QIDEAI -2iER

2 fIDEAL,
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2 R (4)

This force is only opposed by inertia and damping forces, since

the structural restoring reactions to ex would normally act along Ox.

The result, if damping is insufficient, is a divergent whirling

motion. Equation (4) shows the importance of the loss factor p (Eq.

(1)) for prediciton of the stability properties of a rotor.

The extensive data base on tip-loss factors has been correlated

by many authors on the basis of various levels of analysis. A good

review of these efforts was presented by Waterman( 3), from whose

paper we have borrowed Fig. 2. Waterman selected 10 well documented

turbine test cases and five tip-loss prediction schemes, and obtained

results which are statistically summarized in Table 1, also taken from

Ref. 3. (Results based on Lakshminarayana's method were omitted

because of their systematic overpredictions). Given that P averages

roughly 1.5, the variances in the first column of Table 1 indicate a

fairly unsatisfactory state of affairs regarding predictive capabilities.

Perhaps at the root of this situation is the lack of a clear model of how

the losses arise. Generally speaking, the various approaches used have

fallen into three categories:

(a) Models based on calculation of the pressure-driven tip gap flow

rate, plus the assumption that some portion of the kinetic energy of this

flow is lost. Various corrections are used for viscous and other effects.

The models of Rains( 4) and Vavra(5) are in this category.

(b) Models based on adaptations of wing theory to predict the

"induced drag" produced by the trailing vorticity escaping at each blade

tip. A key difficulty is the predicition of tip lift retention, which

determines the strength of such vortices. Examples are

Lakshminarayana(6),(7) and Lewis and Yeung(8).

(c) More recently, detailed 2 and 3 dimensional numerical

computaions of flow in a passage, including gap effects, have become

possible(9 ),( 10 ). While these give important insight as to many details of

the flow pattern, they still lack the precision required to calculate the
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small deficits which add up to the losses. This is not unlike the situation

regarding a much better explored problem, i.e., drag predicitions on a

2-D airfoil.

The models in Group (a) above are basically correct as to gap flow

predictions, and can be regarded as a satisfactory first order description

of near-gap effects. On the other hand, they ignore the concomitant

small changes to the flow over the rest of the blade when a small gap is

present. We will show later that it is these changes that are responsible

for most of the blade force losses.

The models of Group (b), with their emphasis on induced drag,

come closer to capturing the essence of the phenomenon. Indeed, the

flow disturbances at the blades induced by trailing vortices can be one

way of describing the blade-scale effects of tip leakage. What has been

lacking is a globally consistent model of the strength and distribution of

these vortices. Thus, Lakshminarayana( 6 ) used an array of straight-

line trailing vortices of uniform strength, equal to an empirically

determined fraction of the blade lift. Ad-hoc corrections for vortex

roll- up( 7 ) improve the details of blade pressure distributions with

little positive impact on loss prediction.

In this work, we emphasize the global nature of the blade-tip

problem by using an actuator disk model for the stage. Details of the

near-blade flow are in this way simplified by being relegated to the role

of algebraic connecting conditions between the upstream and

downstream flows. On the other hand, the spanwise rearrangement of

the flow pattern due to preferential migration towards the gap region

can be correctly captured, provided one recognizes the discontinuous

nature of the downstream velocity distribution (i.e., the presence of a

shear layer along the tip streamsurface). This shear layer is, of course,

he result of azimuthally smearing the individual "trailing vertices" of

the blades. With some reasonable mathematical approximations,

results can be obtained from this model which agree with data to an

equal or greater extent than existing correlations. Perhaps more
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importantly, these results arc easily enough related to the basic nature

of the problem that generalization appears possible to include effects

such as non-uniform gap distributions (our principal goal) or non-

uniform inlet flow. Improvements can also be introduced on the details

of the flow on the gap scale to account for partial tip loading, as will be

discussed.

2. FORMULATION

For maximum simplicity, our initial model will make the

following assumptions, some of which will be later relaxed:

(a) Imcompressible, inviscid flow

(b) Two-dimensional geometry

(c) Uniformity along the tangential (y) direction

(d) Fluid passing through the rotor blade-tip gap does no work.

(c) Stage collapsed in the axial directon to a single plane, and

smeared in the azimuthal direction.

The "actuator disk" which represents the stage consists of a full-

span stator and a partial-span rotor (Fig. 3), both occupying the x = o

plane. Since there are no variations with y, the azimuthal momentum

equation reads

acy acyCx + C0-
ax az (5a)

or, introducing the vector c 1 = Icx + kcz to represent the meridional

velocity projection,

C1 .V Cy =0 (5b)

showing that C1 is simply convected by Cy. Similarly, the vorticity

equation reduces in this case to

C 1 . V y =0 (6)

where

Y x aCz

az ax (7)
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and the Bernoulli equation reduces to

c1. VB Io (8)

where

B,= + ic2

p 2 (9)

Continuity is satisfied by introducing the stream function P(x,z)

for the meridional flow:

IIx= ; 7cz=--
)z ax (IOa,b)

and then Eqs. (5b), (6) and (8) reduce to

Cy = Cy (1) (11)

Wy= 0y (") (12)

B 1 = BI (') (13)

Using in Eq. (12), the definitions in Eqs. (7) and (10) produce the

equation which governs P(x,z):

V2' = y(OY,) (14)

2 2 a2 D2
where, in this case, a2 a

Notice that the meridional flow (cx,cz) is decoupled from cy, and

can be solved for first. The component Cy, as well as

acy acy
x- z = - , can be found a-posteriori.

Upstream of the stage (x < o), we assume the flow is irrotational

(oy = o), and - simply obeys Laplace's equation. Uneven work

extraction as the flow goes through the stage gives rise to non-zero

vorticity (10y downstream of the disk, and the value of (Oy is carried

unchanged on each streamline from here on.

The vorticity (0 y and the meridional Bernoulli constant, B, are

related to each other in a simple way. Starting from the Lamb form of

the meridional momentum equation,

VB+ oy k x c_=0 oy
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and taking the cross-product with Cj,

=-1x VB1

C 1  (15)

Remembering that, B1 = B1 (P)we have VB1 = (B VW, and
(dV

L VB1)y = (B) (' x VP)y. From the definition of T (Eq. 10),

x V')y = - CI, so that

Wy =~j
(16)

This relationship opens the way for a connection between the
downstream COy and the non-uniformity of extracted work at the disk.

Let subscripts I and 3 denote stations just upstream and just downstream

of the stage (Fig. 3). Them because of continuity,

CX3= CX1 (17)

and, since we assume spanwise uniform blading, which can exert no

forces on the flow in the z-direction,

CZ3= CZI (18)

Because of (17), (18) and the definition (9),

B1- B3,= PI - P3

P (19)

dB1 I -
Now, upstream of the stage, the absence of vorticity implies dP

and so, from (16),

_ dB 1 3  d(B -B 1 3 ) __ -_

d' d' d( P (20)
which gives the vorticity (0y when the distribution of (isentropic)

static enthalpy extraction P is known.
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The geometry of the stage blading is shown in Fig. 4. Euler's equation

gives for the stagnation enthalpy decrease across the stage

- Aht = U cxtan a 2 - (U - cx tan P3)] (21)

where U is the wheel speed.

Adding to this the kinetic energy increase

A (K.E.) = 1 c23 =L (U - c, tan P3)2
2 Y3 2 (22)

we obtain, for any streamline which crosses the disk in the region

covered by the blades (not the gap)

(Pi - P3 ~BL = U x tan a 2 - -I (U 2 - c2 tan2 13)
p 2 (23)

Exactly how much work is extracted from those streamlines

which at some point cross the blade-tip gap is a relatively complicated

question to answer, and to which we will return in Sections 8,9. For

now, we will make the simplest possible approximation, namely, that no

work is extracted. This implies for such streamlines

( 3GAP 1P - P2  Lc Ctan2 a 2
P p 2 (24)

In Eqs. (23), (24), the axial velocity cx at the disk is to be regarded

as a function of z, in anticipation of redistribution of the flow in

response to the presence of the gap. When using Eqs. (20), therefore,

we will put

dx icx az a' x =0 o x az x =0 acx

and so the O)y vorticity can be calculated from Eqs. (23,) (24) as
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BLADES: C)y = - [ - tan a 2 + tan2 P3 (CX
'(C, x=0 az x=O (25a)

GAP: y = tan2U2 az = (25b)aSz Jx=o

Since there is a discontinuity in the connecting conditions for

flow through the gap versus flow through the blade passages, we can

also expect a discontinuity, in the form of a shear layer, on the

downstream portion of the streamline which passes through the blade

ips. Denoting by superscripts (+) and (-) the regions on the gap and

blade side of this layer, respectively, (Fig. 4a) its strength (at least for

the y -component) will be

Q= c)y d'P=B +-B~
f+ 1(26)

With the help of Eqs. (19), (23) and (24), and the fact that no

discontinuity exists in B1 1 we obtain

Q = U cx tan C2 - (U2 - c- 2 tan 2 03) - c+2 tan2 a22 2 (27)

Recapitulating, the equation for T is

UPSTREAM: 2 P = 0 (28 a)

DOWNSTREAM { AES

- tan 2 a2
V 2W= _[ ( tan a 2 + tan 2 03] aCX 0 Q (P - TTIP)

Where 6 (T - TTTp) is Dirac's delta function

The boundary conditions are

T (x,o)= o ; T (x, H) = cx 0 H
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00-oo, z) = cz ; (+ oo, z) = 0

P (0-, z) = 'P(0+, z) ; (0-, z)=(0+, z)
ax (29)

3. INVERSE COORDINATES AND LINERIZATION

Given the convective nature of several key quantities, the stream

function 'P is a natural independent variable for our problem. This will

be particularly helpful for numerical solution, since the discontinuity

at ' = PTIP can then be explicitly retained with no numerical

smearing. We therefore change independent variables from (x,z) to

(x,P), and regard z as the new dependent quantity; the funtion z(x,P),

of course, represents the shape of the streamlines. Using subscripts on

z to denote differentiation, the velocity components are then

CX1= , Cz zx
ZT Zp (30 a,b)

and also

acx 
zTT

\)z x (zi) (31)

and the Laplacian operator becomes

27 = - ZI zxx+2 zp z X -( + zqv1+]

T (32)

The governing equation V2T = Coy (T), which in its original

form was nonlinear by virtue of the dependence of (Oy on T, is now

non-linear only because of the derivative products on its left-hand side.

Whereas linearization in the original coordinates would imply

regarding COy as a small quantity, linearization in inverse coordinates

can fully retain COy, and implies only neglecting certain products of

velocity disturbances on the LHS of the equation. Thus, although the

results will be later verified by numerical solution of the full non-

linear equation, we begin our investigation by linearizing z(x,T) about

the uniform flow condition:
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Cx0 (33)

where Cxo is the velocity far upstream of the disk, and i << z.

For the velocity components this implies, to first order,
Cx CxO - C2 ,

Cz Cx0 ix (34a,b)

The governing equation (Eq. (28)) reduces, to first order, to:

UPSTREAM: Zxx + ZT =0
CX0 (35)

DOWNSTREAM
BLADES

1 ~tan 2(X2Q

C2 xx+zT =- tan C2 +tan 2 [3 j=(ZWI0 c2X0 (CX)X =0xG

(35b)

and the boundary conditions are now

i (x,O) = i (x, cx,0 H) = 0 (36a)
z (- oo,T) =ax (+ oo,F) = 0 (36b)

i (0-, w) = z(0+,T) (36,c)

i x (0~, IF) = ix (0+,T) (36, d)

The shear layer strength Q in Eq. (35b) remains as defined by Eq.

(27), where Cx and C-x are to be found as part of the solution.

4. The Nature of the Throughflow Distributiuon at the Disk

Although there is some interest in the flow distributions

elsewhere, the main results to the obtained depend on how the flow is

distributed at the disk itself. We will show in this section that, in the

present linearized approximation, the distribution consists of two

constant, but different axial velocity levels; one for flow crossing the

gap, and one for flow through the bladed region.

One part of the proof relies on a general property of linearized

actuator disk flow; the disturbance at the disk is half as strong as it is
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far downstream. This property is best known from elementary

propeller theory, where it holds (with no need for linearization) by

virtue of the constancy of the background pressure. For linearized,

confined flows, it is proven, for example, in Horlock's monograph( 1 1).

Since Horlock's analysis is in direct coordinates, the statement must be

qualified by saying that the disturbance doubles between disk and

downstream stations at the same z coordinate. In our analysis i.e., with

(x, 'P ) as coordinates, the disturbances double along a given

streamline. A proof is given in Appendix A. The "disturbance" can be

either z ('), the displacement of a streamline, or dx,its slope. Using the

latter form, then,

(- 1) (same T)
Nx X~ ax X =0 (37)

or, using Eq. (34a),

acx acx

az )X=o \az x=O (38)

On the other hand, the shear - far downstream equals the

corresponding vorticity ()yx=., which is given, for example, by the

right-hand side of Eq. (35b), times - c. Excluding the concentrated

vorticity Q at ' = TTIP, and using Eq. (31), this takes the form

acx ) 
0 =y (T) = F ( ) acx

\ az /* *'\az (39)

tan 2 a2 / GAP
where Ft()a- U = na2+ tan 2 03 GLA (40)

(cx =o01

Comparing Eqs. (38) and (39), we can see that, both shears, _ 0 and
az
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(c X) must be zero, unless F(P) = 2. This latter condition is ruled out

by Eq. (40), which shows F (') O. Once again, this excludes the

vorticity concentration at " = 'TIP.

We can therefore conclude that the axial velocity distribution at

the disk must have the piecewise constant form shown schematically in

Fig. 5. Since the work done by the flow is uniquely related to the disk

throughflow (c) = 0 (see Eqs. (23), (24)), the implication is that the_

turbine work defect due to the presence of the gap will be distributed

uniformly along the blade span, in correspondence with the uniform

decrease of (Cx)x=0. This is at first sight counter-intuitive, given the

strong localized effects produced by the gap flow (leakage jets, rolled-up

structures, etc). Indeed, the non-linear solutions reported later (Sec

7.) show some amount of extra work defect near the tip, but the main

component by far still reamins distributed. This effect may be thought

of as the result of the transverse pressure forces set up in the

confined flow by the presence of the gap. These forces ensure that the

extra flow going to from the gap jet is evenly supplied by the whole

passage, and it is this small flow defect that is responsible for the work

defect. On the other hand, it remains true that strong total pressure

losses must be associated with the dissipation of the sharp

discontinuities created near the tip, and this must be taken into account

as well when calculating the effect of the tip gap on turbine efficiency

(See Sec. 5.2).

5. Solution of the Linearized Equations

5.1 Disk Ouantites

Since C,, (x = o) is piecewise constant, the distributed part of the

forcing term in Eq. (35b) disappears, leaving only the shear layer:

ZXX + Z - 8 ('F -'PTIp) (x > 0) (41)

The values of the two disk velocity levels (Figs. 5) can be

obtained as follows. First, since (C1)y)= - cX (Zq)L (the x-derivatives
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vanish), then, integrating across the shear layer at x = oo, and using

the definition of Q (Eq. 26),

ClxO (42)

where the superscripts (+) and (-) refer to the jet and blades side of the

layer, respectively. At the disk, the difference of the Zp values must
1

then be 2 as much:
Q

(Z4-4Z )=O = -
2 c, (43)

Also, flow continuity (Z (0,0)= Z (0, Hcxo) = 0) plus the constancy

of both Z4 and Zy, can be expressed as

Tx=0+ (1 - X) (Zq)x = 0 = 0 (44)

where X is the fractional flow through the gap (namely,

'P T= (1 - X) Hcx..) The quantity X is regarded as a given in our

formulation, while the geometrical gap width, 6, is not.

Solving Eqs. (43) and (44) together,

x =0O - Q
2 cdo (45 a,b)

which translates into the axial velocities (see. Eq. 34)

CX 1 + -Q (1 -k) ...... (GAP)
_x _ 2 c 0  A
cx 1 Q ..... (BLADES)

2 cX,
(46 a,b)

Since this gives us the velocities cx and Cx at the disk, we can now

substitute (46a,b) into the definition (Eq. (27)) of Q, which yields a

quadratic equation for Q as a function of .

After some rearrangement, this is
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(1- tan 2 a 2 - X2 tan 2 P3 q 2  +(I -X)tan2 a2+X-tana 2 +Xtan2 P q
4 92+ 2+4-)a2 2 a 21tn2p

[2 1 1..

tan a2- + tan 2 P3 - tan 2 X2I= 0

04 42 J(47)

where $ is the flow coefficient

Cxo

U (48)

Q
and the dimensionless shear layer strength is q (49)

XO

The implied gap width, 6, can be easily calculated. Integrating

Eq. (45b) from P = 0 tO = PTIp = (1 - X) Hxo

H 2 (50)

Adding to this he undisturbed value ( (1-X) H), we obtain ZTIP, and then

H - ZTIP. The result is

-8-= X I -(1-X)q
H [' 2J (51)

This can also be solved for the leakage if the gap is given:

2 (8/H)

1 - + 1 q + 4 (5 2)

Notice that A depends non-linearly on (6/H), both explicity, and

through the dependence of q on X (Eq. (47)). For the practical, small

values of k and (8/H) this is not a strong non-linearity, however.
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5.2 Work Defect and Efficiency Losses

The power extracted by the turbine, and hence the tip loss coefficient,

can also be calculated easily. In coefficient form,

"'h I (ht,- ht3) pdNf
rihU2 fo (53)

The total enthalpy drop is given by Eq. (21) for the bladed area
(using cx = cX), and is zero for the gap.

Remembering that p .W = 1 - X, we obtain
m

' = (1- X) $ (tan a2 + tan 03) -1- 4 (tan a 2 + tan 03)

For zero leakage, To = $ (tan a 2 + tan 03) - 1. The relative work

defect is then

=O - 1 + V qj
Wo .i No 2 ] (54)

We can now calculate a work defect coefficient w as the relative work

decrease (Eq. 54) divided by the relative gap width, 8/H. Using Eq. (51),

+ N+ IXq
Vo 2w=

2 (55)

This coefficient is not to be confused with the efficiency-loss

coefficient fintroduced earlier (Eqs. 1-4). If we agree to work with the

total-to-total efficiency '9, its evaluation requires in addition the

calculation of the total pressure (Pt)MIX at a hypothetical downstream

section where the shear layer has dissipated and conditions are again

uniform.
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At this "mixed-out" downstream station, the axial velocity must

again be Cx. (to conserve mass) and the tangential velocity (from y-

momentum balance) must be

CYMIX =.. C +(1 -)c (56)

where C+ and Cy are the tangential velocities in the fluid above and

below the shear layer, respectively. Prior to mixing, both C+ and C-

are uniform in their respective domains, because they are uniform at

the disk (in our two-level approximation), and are then purely

convected from there. From Fig. 4 we have

c= cx tan (X2

(57)
c= U- c tan 3 (58)

where Eq. (57) reflects the assumption of zero turning of the gap flow,

and (58) assumes perfect guidance by the rotor blades for the rest of the

flow.

The total pressure in the mixed-out region is given by

Pto - PtMIx _ POP 1 2

P P Y9 (59)

where P. is at a far downstream position, (before or after mixing) and

we have taken advantage of (cx).= Cx , (cz). = 0. The static pressure

drop can be calculated for a streamline which goes through the blades.

The drop P1 - P3 at the disk, is given in Eq. (23). Upstream of the disk,

PO - PI _ ) 0 'C 12
- -(c),.....- -- (60)

p 2 2 (60)

and downstream, since Cy remains invariant,
P . - P 3 L C 2-LP0 P3 = cc 0 - I(ci)

p 2 2 (61)

Here C2 (x = 0) is a 2nd order quantity in our linear analysis, and

will be ignored. Substracting (60) and (61),
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Po - P.= PI - P3 +I(Cj2-I C2

P p 2x 2X0 (62)

Combination of Eqs. (58), (61) and (23) therefore gives the total

pressure from far upstream to the hypothetical downstream mixed-out

station. This quantity is the ideal work extracted per unit volume, and

the efficiency is then

TI (Pto-PtMIx

pU2 (63)

where N is as given by Eq. (54). The efficiency loss factor follows as

S-TI

8/H (64)

As noted, the efficiency TI is affected by the decrease of W due to

the gap, but (see Eq. 62) also by that of the total pressure drop. With

no gap, and everything else being ideal, we would have TI = . Let

the total pressure drop be therefore expressed as

Pt. -tMIX = V0

pU 2  (65)

where (which is a positive quantity) can be calculated following the

outline explained above. Then it is easy to show that the loss factor f

and the work defect factor w are related through

w -

H (66)

so that P is in general smaller than w. Calculated results will be shown

in Section 6.
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5.3 Velocity Distribution away from Disk

The solution to Eq. (41) is most easily written in terms of Fourier

series in ', which can also represent the discontinuities occurring

along the shear layer. This is the form naturally obtained by formal

separation of variables. Imposing all the boundary conditions listed by

Eq. (29), we obtain

nnx
an e f sin n7M (x <0)

n=

H I {n2 - e- H sin nit (x> 0)

n= (67)

where

Hcx (68)

and the cn coefficients are yet to be found.

The I- derivative at the disk is

()x=o= 7 nan cos n x 0
x n=1 (69)

This must be identified with the distribution of ZqJ given by Eqs.

(45), i.e. iz for 0<0<1 -Xand 'Zj for 1 -X<6< 1. Fourier inversion

then yields

aXn = (- )n +1I sin nick

02 Ci n2  (70)

When these an'S are substituted back into Eq. (66), the resulting infinite

series are in general not summable in closed form. However, the

derivatives of z, which are related to velocity perturbations (Eq 34), can

indeed be summed. Without stopping to discuss the details (see Ref. 12)

the results take the following forms:
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UPSTREAM:
c -1-

Cxo 2ncdX0

cz
cx

tan -11

- Q
4c2

sin n (1 - 0 - 1 -tan -1 [ sin n (1 - 0 + X)

e- 7x/x-cosn (1 - 0j e- xH - cos n (1 - 0 + X_

1-2 e ixfH cos7t(1 -0+X)+e 2 xH1
In 

x/

0 1- 2 e 1x/ cos (E0-0)+ e 2 7

(70a,b)

DOWNSTREAM

CX Qc. --1 -
Cx0 2xtc2,

GAP
ILADESI

tx (I

e7xo

-1)sinit(1 -0-) 1
+ tan -1[ +i 7(1-0-X

e x/H - cos I (1 - 0 - X

Q_ In 1- 2 e- 7xtH cos n (1 - 0 +
42.o - 2 e- "x/H cos n (0 - 0

tan -1 sin 7t(1 - 0 +

le 7x/H cos n (1-0+

) +e- 2 nx1

- X)+ e- 2 7tx/H

(71a,b)

The Cx discontinuity is apparent (Eq. 71a). The expressions also

show clearly that the axial scale of the near-disk potential effects is H/n,

which, while being probably many times the gap width 8, is still likely

to be small compared to the mean radius R of the stage. This fact can be

exploited in studying the effects of azimuthal variations of gap width.

Particularization of Eqs. (70a) and (71a),

known two-level velocity distribution (Eq. 46).

(70b) or (71b) give the spanwise flow velocity

for x = o do yield the

On the other hand, Eqs.

at the disk as

sin 9-(1- 0 + )
(cz In 2

X. X = 0 27 cl0  sin (1- 0 - X)
2 (72)

which exhibits a logarithmic singularity at the tip (0 = 1 - X).

I
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The shape of the streamline which supports the shear layer is of

some interest. Putting 8 = 1 - k in Eq. (71b) and relating z to j, by Eq.

(34b) gives

d- ( x In 1 + 4 sin 2 RX e- "x
dx 4tcL (1-e-E J (73)

This is not analytically integrable, but for small X, and provided

> X(which only excludes the immedicate vicinity of the gap), we

can expand the logarithm in (73), and then integrate with the condition

(TTIP, 00) = 2L (%PTIp, 0) = 2(X- -
H H (74)

Including the unperturbed contribution (1 - ), this gives

(TrIP, X) = - + Q (I-X) + sin nX I i ( 5H {X1X (iLLk21( ]}
6. Some Results of the Linerarized Model

6.1 Parametric Trends

This subsection gives some simple calculated results from the

formulae obtained so far, in order to illustrate the trends and

sensitivities involved. Further results and comparisons to data are

deferred to Secs. 6.2 and 9.2.

As might be expected, the degree to reaction R (see Appendix B

for definitions used) is an important parameter controlling the effects

of tip leakage. At very high R the turbine is lightly loaded and the

effect of the gap is small. This can be seen most easily in the zero exit

swirl case, when Eqs. (B4) and (B7) indicate N = 2 (1 - R) so that

I -+ 0 when R -4 1. At the other, and more realistic end (small R), the

individual turbine blades are highly loaded, but there is little net

pressure drop across the rotor. Since there is then little incentive for

approaching flow to migrate spanwise towards the gap region, little

blade unloading is expected. Thus, the shear strength Q and the loss
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parameter P are expected to show maximum values at some intermediate

degree of reaction, For the same reasons, the difference between the

relative gap 8/H and relative leakage rate, X, will also peak at that

intermediate R.

These trends are shown in Figs. 6 and 7. Here the leakage )L was

held at 0.1 and the degree of reaction R was varied over the range 0-1,

while the flow coefficient O was given values from 0.3 to 0.7. Zero exit

swirl was assumed, and so different O values imply different turbine

angles P3, while varying R amounts to varying the stator blade angle

a2. The expected peak in loss factor is seen to occur for R 0.8, which

is higher than the practical range for turbines (0 - 0.6 or so). Hence, in

practice, the expected trend would be for losses to increase with degree

of reaction. This trend is clearly exhibited in Waterman's data

compilation( 3 ), as indicated in Fig. 8 (taken fom Ref. 3). More detailed

data analysis will be shown in Secs. 6.2 and 9.2. The minimum of 8/H at

R = 0.8 shown in Fig. 7 confirms that redistribution effects are indeed

strongest then, since the smallest gaps is required to pass a given

leakage.

So far parametric results ("rubber engine") have been discussed.

For a given turbine (given X2, 03) some trends are shown in Figs. 9 and

10. Fig. 9 shows the two axial velocity levels at the disk as the gap only

is varied (as reflected in the leakage rate). While both velocities vary

only slightly with gap, it must be remembered that for the bladed

region, it is the difference I -x, that controls the losses, and this

difference does have a substantial variation. On the other hand, the

"jet" velocity changes are not particularly significant, as one would

expect, since they mostly respond to the fixed AP across the turbine. O f

course the word "jet" must be used with caution, since only the x-

component of the velocity is shown.

In Fig. 10 all geometrical parameters, including gap size, are

fixed and the flow coefficient is varied. This allows non-zero exit swirl

to occur (ranging from C o/CX, = 0.73 at 0 = 0.27 to CO/c, - 0.47. at



23

$ = 0.4, with zero exit swirl at $ = 1/3). As the flow varies, the degree

of reaction remains approximately fixed (close to the design value of

0.5), but turbine loading To increases with 4, as shown in the lower

scale. As the results show, the tip leakage fraction remains at about 1.5

times the relative gap throughout. On the other hand, the loss factor p
increases strongly with flow, and weakly with decreasing gap.

6.2 Comparison to Turbine Data

We can now compare the calculated losses to those

reported in the experimental literature. We rely for this on the

compilation of Ref. 3, which gives data for ten cases (nine different

turbines) over a wide range of parameters. Ref. 3 reports for each case

the tip values of the work co-efficient To (two definitions), degree of

reactor R, flow coefficient 0, and individual blade loading (lift

coefficient cL, based in inlet relative velocity and blade area, and

Zweifel coefficient (tangential force coefficient based on tangential

area and exit dynamic head). Also reported are the relative gap and, in

some instances, other geometrical parameters. As noted in the

Introduction, Ref. 3 also shows the results of several existing loss

correlations or theories when applied to these cases, plus the actual

measured loss factor P.

One potential difficulty in application is that only "jg parameters

are given, whereas from the nature of our theory we suspect that mean

parameters might be more appropriate.

Starting from Vo (with the definition which agrees with that in

our Appendix B), 0 and R, the equations in Appendix B allow

calculation of the blade angles a 2, P3. The fractional leakage, X, is

determined from the relative gap 8/H using Eq. 51. This involves the

shear strength q, which itself depends somewhat on X, so some

iteration must be used. The remainder of the calculations is

straightforward. Table 2 summarizes the results
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Scanning Table 2 we first notice a large disagreenment for Case I

(Kofskey turbine). This is an impulse rocket turbopump stage with

extremely large reported tip loading (W = 7.0). As the table shows, this

leads to very large exit swirl (c/cx.= - 3.2). No reasonable modification

of the theory could be found to resolve the disagreement of the f
calculated and that reported, which, as expected for a low-reaction

stage, is low (P = 1.02). A calculation was made, as shown in the second

from-last-row of table 2, with a load To reduced to 2.0, which leads to

near-axial exit flow, and this does predict P = 0.97, close to the measured

value. This might indicate a large radial load gradient for this turbine,

but this has not been investigated futher.

Excluding Case 1, the mean squared error in the predicted 0 is

E2  ~ (DATA - OCALC2 = 0.1434
N

This compares favorably with the results of applying the correlations of

Kofskey, Ainley, Soderberg and Roelke (See Table 1). The mean error

is C = DATA - CALC = 0-1434
NN

which idicates a general under-prediction of the losses. The standard

deviation is

Y=e -T7 0.337

7. Numerical Verification

The linearized solution has yielded important results, some of

which defy our expectations. It is therefore important at this point to

investigate the extent to which these results may have been

compromised by the linearization. To this end, we need to solve by a

numerical technique the complete non-liner actuator disk problem

(Eqs. 28, 29). Inverse coordinates are still a convenient formulation,

especially in that they fix the location of the shear layer along a

coordinate line
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(T = PTIP, X > 0), thus avoiding the smearing inherent in any

discontinuity-capturing approach that could be used in direct (x,z)

coordinates. Simple finite differences on a rectangular grid can also

be used effectively with such a formulation, since the main surfaces

(disk, walls, shear layer) are all aligned with the coordinate lines (x,'P).

The only disadvantage is the more complex form of the Laplacian

in these coordinates (see Eq. 32).

The method used is a form of over-relaxation, which can be

constructed starting from a minimum principle for the problem (See

Ref. 12 for details). Care is taken to include the 8 functon on the right-

hand side of Eq. (28) in a consistent manner. Integrating Eq. (28) across

the shear layer, and, as before, using superscripts (+) and (-) for the

gap and bladed sides, respectively, one obtains at each x

(1+z2)1 - 2Q
(z)2 (zq,)2 76)

where Q is calculated from disk vewlocities according to Eq. (27). In

discretizing the connecting condition (76), one-sided differences are

used for zq and z, to avoid numerical "mixing" of the two streams. Most

of the calculations were done on a 16 x 32 grid. As a check, one case was

computed on a 24 x 48 grid, and the discrepancies (Table 3) were found

to be below 10-3 in relative terms.

A series of numerical results showing the two velocity

components at the disk, with the linearized theory results

superimposed, are given in Figs 11 through 26. For degrees of reaction

below 0.4 or above 0.90 the agreement is excellent. As expected, the

worst linerarization errors occur in the vicinity of R ~ 0.8 , but even

then the results of the linear theory are found to be fairly accurate.

Most importantly, the prediction that the axial velocity at the disk is

piecewise constant is clearly borne out by the nonlinear results. The

only noticeable deviation from throughflow uniformity in the bladed

region occurs very near the blade tip (on the scale of the gap size), and

its integrated effect is in any case minimal.
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8. Partial Blade-Tip Loading

8.1 Introduction

One of the basic approximations made in the theoretical

treatment so far is that of zero work done by any fluid crossing the gap

area. If we include under that description any streamline which passes

over one blade tip, this is clearly not an accurate assumption. Fig. 27,

for example, shows that, prior to crossing over, a streamtube is partially

deflected by the blade, and hence does some push work on it. The

magnitude of this work could be quantified if the flow angle for the

leakage fluid leaving the passages were known, which prompts us to a

more detailed examination of the flow field around the blade-tip gap

region.

The blade-tip region has been theoretically treated using a

variety of approaches. The simple model of Rains(4 ), which is most

appropriate for thin, lightly loaded blades, uses ideal, pressure-driven

flow concepts to derive the speed and direction of the gap "jet". Even

for the case of the thicker turbine blading, ideal flow is a fairly good

approximation. For example, Rains(4 ) gave a criterion for viscous

forces to be negligible, in the form

A GAP 2 x THICKNE-5) x R (CHORD, REL. INLET, VELOCITY) > 125
THICKNESSY CHORD

(78)

For the experimental turbine being tested as part of our research on

Alford forces, this parameter is approximately 1000, and this situation is

quite common. On the other hand, the effects of chordwise pressure

gradients on thick-blade tip flows, as well as that of relative wall motion

are still potentially significant, and have not been treated so far.

The gap jet is known to interact strongly with the passage flow

and to roll itself up into a concentrated vortex-like structure. Rains
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himself derived (4) a semi-empirical expression for the trajectory of

that vortex. Lakshminarayana (6,7) also used empirical information

on the tip vortex location and strength to predict details of the blade

pressure distribution, In fact, the strength of the vortex was explicitly

related to a "partial blade-tip loading parameter", K, varying from 0 to 1,

and inferred from extrapolation of surface pressure measurements

near the tip to the end wall. Since there are very sharp pressure

gradients in the pressure side of the blade, near the gap, this procedure

is fraught with difficulties. More recently, G.T. Chen et al (13) have used

vorticity dynamics to simulate the roll-up process, and have been able

to predict accurately the trajectory of the vortex.

In what follows, we will introduce an alternative viewpoint

which leads to simple, but accurate expressions for the location and

size of the leakage vortex. This can then be used in calculating the flow

leaving angle of, and hence the work done by the leakage flow.

8.2 Collision of the Leakage Jet and the Passage Flow

Fig. 28 shows schematically the essential features of the leakage flow.

The fluid approaches a blade (here represented as a flat plate) with a

relative velocity w 2 , which evolves into the passage flow velocity WPAss

at locations not very near the tip gap. Under the action of the pressure

differential across the blade, a jet of leakage flow at velocity Wjet escapes

under the blade. This jet penetrates a certain distance into the passage,

but is eventually stopped by the main flow, which separates the jet from

the wall, turns it backwards, and leads to the formation of a rolled-up

structure containing both, leakage and passage fluid. This "collision" of

the two streams is again shown in Fig. 29 in plan form, and Fig. 30

shows a schematic of the flow structure seen in a cut such as a-a in Fig.

29, with leakage fluid shown dashed.

Consider the situation at points along the jet separation line, such

as P in Figs. 29,30. Ignoring frictional effects, the two streams which

meet there (jet and passage flows) can both be traced back along

different paths, to the inlet flow, and hence have equal total pressures

and temperatures. Since they also have equal static pressures along

their contact line, (and generally similar static pressures throughout
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the region), these two streams must have equal velocity magnitudes. If

the section a-a is perpendicular to OP, we can think of pont P (Fig. 30) as

the common stagnation point of the two "colliding" flows, approaching

each other with equal velocities, which are each the component of Wjet

and WPAss perpendicular to line OP. It follows that line OP must bisect

the angle made by Wiet and Wrass This gives a first and important

piece of information about the location of the rolled up structure, but,

since this structure has a finite and increasing transverse dimension, it

does not yet locate its center.

To continue our discussion, notice that the transverse momentum

balance of a fluid element near point P requires that both transverse

colliding flows must bring equal (and opposite) momentum fluxes to the

rolled-up structure. Since the two velocities are equal, we find that

equal mass flows must be entering the rolled-up structure from both

fluids. In other words, the clear and dashed areas in Fig. 30 must occupy

equal fractions of the total "vortex" cross section. Let 8 JET be the jet

thickness, and Wi, w 1 the common components along and across OP of

the colliding streams. The rate of increase of the cross-section A 1 of the

rolled structure along OP is then given by

W dAL= 2 w1  JET
ds (78)

0 =tan.1 WI
or, callling WII, i.e., the angle made by the separation line OP

and the blade itself,

dA_ = 2 8JET tan 0
ds (79)

where s is measured along the vortex trajectory.

The precise shape of the rolled-up structure is more difficult to

establish, but it seems reasonable to model it as (half) cylindrical ideal

vortex in a cross-flow. Following Batchelor( 14 ) such a vortex is

describable by the stream function (Fig. 31)

'P = 1.298 wi R J1 (3.83 ' sin i (80)
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where R is the radius of the dividing streamline, J1 (x) is the Bessel's

function of the 1st order (with a zero at x = 3.83) and (r, (1) are polar

coordinates. The vorticity in this flow is distributed inside the semi-

circle of radius R in proportion to T:

CO 3.8 3
\ R (81)

and is zero outside. Integration of (O gives an overall circulation

['= 6.83 w1 R (82)

whereas integration of r sin 0 (0 gives a center of vorticity height of

ze = 0.460 R (83)

We thus make A1 =7rR2, and measuring distance along the blade

(xBL = S cos 0), we can integrate Eq. (79) to obtain

R= 4TtanO 6 JET XBL
7 L cos0 (84a)

The trajectory of the vortex center then follows (Fig. 32) as

yc= XBL tanO- R
cos 0 (84b)

To complete the analysis, the angle 0 must now be determined. From

our discussion of the separation line OP, this angle was shown to be half

of the angle P between the blade and the jet flow:

0= P/2 (85)

This angle P follows from the simple local analysis first proposed

by Rains( 4 ), which applies to thin blades when viscous effects can be

neglected, In Fig. 33, wp and Ws are the flow velocities on the pressure

and suction sides of the blade, respectively. Application of Bernoulli's

equation relates these velocities to the corresponding pressures:

wp= w 2 2 -2 P2

P (85)

(86)

where P2 , w2 corresponds to inlet conditions. On the other hand, the

leakage jet emerges form the gap with a velocity component

perpendicular to the blade of
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WG 2 2
p (87)

and its components parallel to the blade is simply wp, since no

momentum is added or lost in that direction during passage throught the
gap. It can be verified that the net magnitude wJET of the jet velocity is

then equal to ws, as indicated previously. We then obtain (Fig. 33)

tan $ (88)

where c = 2((P-P 2))/p w2 in each case. Note that (cp)p -(cp)s is the local

lift coefficient cj, referred to the relative turbine inlet velocity. Using

the half-angle trigonometric formulae,

tan 0 = -14
1 _-(C,) + f 1 -(C4 (89)

Notice that, as shown in Fig. 33, the vorticity vector

corresponding to the shear between the jet and the adjacent passage

flow is inclined at 0 = P/2 w.r.t. the blade, i.e. it is parallel to the outer

edge OP of the rolled-up structure, This is also the direction of the mean

flow between the two sides of the shear layer, which means that the

shear vorticity is not convected at all towards the line OP. The only

reason the vorticity F rolled up into the structure increases with

downstream distance is that the growth of R gradually overlaps more

and more of the shear vorticity. In this sense, the commonly invoked

view of the rolled-up vortex growing by the connection of shed vortices

must be used with caution.

Eqs. (84a), (84b) and (89) can now be used to calculate the vortex

geometry if the suction and pressure side Cp distributions are know

from experiments or calculations. A simple approximation can be

obtained using the theory of lightly loaded thin wing profiles. In this

approximation, (wp+ wY2 w2 , which when used in Eq. (85, (86)

reduces both (Cp)p and (Cp)s to functions of c = (Cpp - (Cp)s alone. Using

this in Eq. (79) gives finally
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(C , (<4)

S= cos 1  ,4+cL (L4
CL

4+cj (CL>4)

(90)

Notice the relative insensitively of 0 to CL, particularly about he

common value c' = 4, when 0 reaches a maximum of 450*.

8.3 Comparison to Vorticity Dynamics Model and to Data

Ref. (13) has recently provided a means of correlating a varitey

of rolled-up vortrex data using a similarity analysis. Transverse

distances are normalized by gap width 8, and axial distance, or time-of-

flight are characterized by a parameter

x X P (91)

where x and Cx are axial distance and velocity and AP = Pp- Ps. The data

from many experiments (mainly from compressor cascades) correlate

well with t*. In addition, a calculational method was developed in Ref.

13 to track a series of shed tip vortices from an impulsively started plate,

which represents the situation seen from a convective frame as the

flow passes over a blade. The calculated results were shown to also

correlate well with t* and and with the data.

We use the correspondence

-X-= cos $ 2  , X =Cos $M
W2 XBL (92)

where $2 and Pm represent the relative flow angles at the rotor inlet and

on average in the rotor, respectively, to derive

XBL _ W COS$2 t*
8JET wG COS pm (93)

where j= JET/ 6 is the gap discharge coefficient. Note also that
W2 = 1/
WG .

For an approximate comparison, we use Rains' (4) values
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COS S
p.=0.785 C = 1.35 = 1.1

COS P

to relate t* to our XBL, and then calculate the vortex trajectory using Eqs.

(84a), (84b), (89) and (90). The results are compared in Fig. 34 to those

reported in Ref. (13). The agreement with the data is satisfactory.

Additional verification against the theory of Ref. (13) can be provided

by comparing the predictions of both theories regarding the "center of

vorticity" location in a cross-plant similar to that shown in Fig. 30. in

order to be consistent with the calculations of Ref. (13), we have

included here both, the rolled-up vorticity IF (Eq. 83), and a vorticity

2w1 per unit length (perpendicular to o0) of the not-yet-rolled shear

layer.

In calculating the distance ze between the center of vorticity and

the wall, we took this latter contribution to be at a distance 6 JET, and that

of the rolled-up vortex to be at 5 JET + 0.46R (Eq. 82). The results are

shown in Fig. 35, which again shows good agreement between our

method and that of Ref. 13.

9. Blade-Tip Losses Including Partial Tip Loading

9.1. Modications of the Actuator-Disk Model

We now abandon the assumption of zero work done by the

leakage fluid. This is somewhat less drastic a step then it might seem to

be. Conceptually, we will now claim that the fluid which crosses the gap

between the casing and a turbine blade is only partially underturned

when compared to passage fluid. The fractional work done per unit

mass of this leakage fluid will turn out to be about 50%, typically. On the

other hand, this fluid "collides" with passage fluid and coalesces with it,

leaving the rotor mainly in the form of a rolled-up vortex which

includes 50% each, gap and passage fluid. Thus, an equivalent amount

of passage fluid ends up being underturned as well. These two effects,

partial under-turning of gap fluid, and partial under-turning of vortex-

entrained passage fluid, tend to add up to the same net result as in the

more idealized model considered so far.

There are three specific modifications to be made to the theory in

order to incorporate these effects:
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(a) Re-defining the"leakage flow fraction", X, to include all under-

turned fluid. Of this, only the fraction X/2 is gap flow, and this is

what must be related to the physical gap, 8 (Eqs. 51 or 52).

(b) Allowing a non-zero total enthalpy drop for the gap flow, and

relating it to the angle 0 by which the flow fraction X under-

turns. This angle is supplied by a form of the theory of Sec. 8.

(c) Recognizing that the fluid comprising X has not undergone an

isentropic work-producing process, since formation of the

rolled-up vortex is intrinsically lossy.

The under-turning angle 0 should be calculated as an average

which includes the rolled-up flow, assumed to have its momentum

directed along the centerline of the rolled-up vortex, and also the

portion of the gap jet which is not yet rolled up at exit (similar to the

calculation described in Sec. 8.3 for the center of vorticity). In the

interest of simplicity, we will take 0 to be as given by Eq. (85), i.e., the

angle between the blade and the outer edge of the vortex (Figs. 32, 33).

This will to some extent cancel the modifications due to, on one hand,

the angle between this outer edge and the vortex centerline, and, on the

other hand, the contribution of the un-rolled jet, which is more

strongly under-turned.

Let Pm be the average angle of the rotor blades to the axial

direction which can be calculated (Fig. 4) as

PM- 3 - ( 2)DES.
2 (94)

with tan (P2)DES = tan X2 - = tan X2 - tan P3 (95)
ODES

The passage flow relative velocity is then (on average) WPAss =

Cos hM

which has components wgl and wj. parallel and perpendicular to the
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line OP (Figs. 29, 30) which is now taken to represent the rolled-up

vortex

Wi x ": Cos 0 ; w-CX sin e
COS m COsjm (96)

The gap flow, for its part, has components w11 and -wI in the

same directions. The flow fraction A is all assumed to leave the passage

with velocity WI along line OP, and so its relative Y - component of

velocity is wi 1sin ($m - 0). In the absolute frame, then,

+ _ Cos 0 sin ($M - 0)cy3 = U - c s
Cos PM (98)

where we use the (+) superscript as before to denote the "gap fluid",

which now, more precisely, means all of the under-turned fluid. Of

course, the rest of the fluid has a Cy3 = cy3 still given by Eq. (57).

Also, the disk axial velocities Ct , CjX are still as given by Eqs. (46),

although Q will now be different. Notice that Eq. (98) replaces the

previously used non-turning assumption (cyi = cx tan a 2 )

Application of the Euler equation to both fluids gives the work

done per unit mass by each stream:

W+= U (ct tan a2 - cy)

W-= U (cx tan a2 - cy3) (99a,b)

and, since ideality is assumed in the bladed region, pW- is the same asd

the turbine total pressure drop in that region, i.e.

W- = BI - B- = B1I - BI - (cy3)2
2 (100)

In the "gap region", however, W+ is less than the isentropic

work B1 - B+ by an amount TAS equal the energy dissipation incurred

in the mixing of the gap and passage streams. Per unit mass, this

dissipation equals the kinetic energy associated with the "destroyed"

component W1 of Eq. (96):

TAS= (et sin 0
2 Cos PM (101)

and therefore
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W B - B - (cy3P - (c+) sinL
1~o $ 2 CO /N (102)

Subtracting Eqs. (100) and (102), and remembering that Q = B7 - B, we

obtain

Q = W- - W+ -(c) sin 02 - (cy+)2 +-(CY32
\COS m/22 (103)

We can now use Eqs. (88) and (57) for the Cy's, and then Eq. (46)

for the cX's and, upon substitution into (102), we obtain the new

equation for q. Rearranging this takes the form

(1-k2G - X2tan 2P3] (SY + 2 2 + tan a2 + (1 - X) G + Xtan 2 pm1 -

- (tan 2 3 - G)= 0 (104)

where G (cos e sin(m - e) + sinem
\ cos M / \cos mI (105)

which replaces Eq. (47).

Once q is calculated, the total turbine work per unit mass is
XW+ + (1 - ) W-. Normalizing,

V =V0 - X0$(tan P3 - g) 1+ 2 q(16~~ q)(106)

where g = (cos sin ($m - 0)

COS M (107)

The calculation of the total pressure drop is identical to that

explained in Eqs. (58) - (61), except that, as mentioned cY3 is now given

by Eq. (98) rather than Eq. (56). In particular,the static pressure drop

still follows from Eqs. (61 and (23), since only ideal flow

through the bladed region is involved. Following calculation of

Pto - PtMIX., the efficiency and the loss parameter can be found as before

(eqs. (63), (64)).
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9.2 Comparison of the Theory with Partial Tip Loading to Data

In order to compare the modified theory of Sec. 9.1 to the same

turbine data as before (Sec. 6.2), additional data regarding individual

blade loading are needed to calculate the under-turning angle 0. This

information is contained in the Zweifel coefficient ZW, which is also

reported by Ref. 3 in each case, This is related to the blade lift as

shown in Appendix B (Eq. B 11). The angle 8 then follows from Eq. 90,

where the overall lift coefficient CL is used as a representative value of

the local c'L

The results for the same set of data as was used in Sec. 6.2 are

summarized in Table 4, where the entries are the same as in Table 2,

except for ZW and the last column, labelled K, which is the ratio of work

done per unit mass by the underturned flow to that done by the blade-

guided flow:

K - W+
W- (108)

Once again, Case I can only be brought into agreement with the

data if the load factor is reduced to about the design value (i.e., for zero

exit swirl). Case No. 4, with very high reaction, is also substantially

under-predicted, which may point ot an insufficient predicted

underturning 0 for these conditions. The rest of the cases are well

predicted. Excluding Case 1, as before, the mean squared error is

2 0.1162
and the mean error is

= -0.1408

which imply a standard deviation

a = 0.3105

These statistics are slightly better than those found for the zero

tip loading theory (Sec. 6.2), and, although they compare favorably with

those for the standard methods, they also still show some systematic

under-prediction and moderate scatter. It is of interest that most of the

error and scatter (other than that due to point 1) is caused by the

single high-reaction data point (Case 4). If that entry were also

removed, we would have E2 = 0.0363, = - 0.0498 and G = 0.184.
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Perhaps more effort should be devoted to an understanding of the

leakage and underturning effects for high reaction rotors.

10. Summary and Conclusions

A theory has been developed to illuminate the effects of spanwise

flow redistribution caused by the presence of a small rotor blade-tip

gap. To this end, the blade-to-blade details are ignored by using an

incomplete actuator disk formulation which collapses both startor and

rotor to a plane, across which connecting conditions are imposed.

In the simplest version, the flow which leaks throught he tip

gap is assumed to do zero work. The results indicate that the flow tends

to go perferentially though the gap, and that the attendant flux

reduction elsewhere is very nearly uniform in the spanwise direction.

The axial length scale for this flow redistribution is the blade height,

and not the gap size, as might have been expected. As a consequence,

the unloading of the turbine blades is uniform, and the work defect

cannot be localized in the near-gap region. On the other hand, the

efficiency loss is due to mixing effects downstream of the gap. In this

simple model, this mixing is that between the bulk flow and the

underturned and somewhat axially faster stream going through the gap.

In order to shed some more light on the details of the gap flow, a

modification was made to the theory in which the underturned stream

was recognized as originating partly from gap flow, partly from

entrained passage flow, both leaving the passage in the form of rolled-

up tip vortex. The trajectory and other details of this vortex were

calculated using a simple model involving the collision of the ideal

pressure-driven leakage jet with the passage fluid. This model was

calibrated against both, data and the theory of G.T. Cheng et al (12). The

modified actuator disk theory allows prediction of the fractional tip

loading factor K, and introduces the effects of loading level on

individual blades, which the simpler version ignores.

Both actuator disk models were then compared to a set of data

involving 9 different turbines (10 operating conditions). With the
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exception of one anomalous case, the calculated efficiency loss factors

are reasonably close to the data, showing less deviation than the loss

correlations of Ainley, Soderberg, Roelke, Kofskey and

Lakhsminarayana.

These results suggest that upstream flow redistributions which

have been largely ignored so far may be of importance in

understanding the basic physics of tip leakage effects. It is recognized,

however, that the complete smearing out of blade-to-blade variations

may be too drastic an approximation, as the neglected scales are on the

same order as the axial redistribution scale which is retained. Further

work is recommended to explore this issue.
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Appendix A.

Disk versus Downstream Disturbances in Linearized Actuator Disk

Thegry

The linearized equation governing the streamline displacement i

in inverse coordinates is

I xx + z =-
X 0(clx) (Al)

and 0)y 0 for x < 0. The boundary conditions (Eq. 29) are all

homogeneous. The right-hand side of (Al) will be written for short as

R(x,N). To make it explicit that this must be replaced by zero for x < o,

we introduce the unit step function u(x) (u=o for x<o, u=1 for x>o), and

write

R(x'V) = () U(x) (A2)

where Y= - o xo (VcL. The function R(x, T) can be decomposed

into its even and odd parts with respect to x:

R(x, T) = I4T) + u(x) - I4T)(A3)

The solution i can then be broken into the part 'zH, which

satisfies the homogeneous equation, plus the forced solution, which

will itself have even and odd components ZE and Zo, corresponding to

the decomposition (A3). Imposing the homogeneous boundary

conditions (Eq. 29) on zH ensures that

ZH 0 (A4)

The forced, even solution jE obeys (for all x)

I (zE)xx + (zE)6' = R (T)
C2 (A5)

and can therefore be taken as a function of ' alone, which leads to

immediate integration

1E= R (T2) dP2 I + AT + B
2 / (A6)

with A and B chosen to satisfy zE (x,o) = zE (x, H cx0 )= 
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The odd forced solution, ~o must then be made to cancel

ZE -*

T o - * - E (
Therefore, at x -+, jo (- **,F) =+ 4E (T), and superimposing,

( V 2 11 (V

(A7)

0-0, =IE (A8)

On the other hand, since o ( x,'T) is odd in x, we have io ( 0,T) = 0 so that

io I 0,T) = 4E I) (A9)

Comparison of (A8) and (A9) proves that the displacement of each

streamline is twice as large far downstream as it is at the disk.
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Appendix B

Definition of Parameters Used in the Analysis

For convenient reference, we collect in this Appendix a number of

performance parameters whose definitions vary sometimes from author to

author. The form given here was used throughout our calculations.

BI. - Flow Coefficient
cxo

(B1)

B2. - Work Coefficient
Power
ril U 2  (B2)

For nominal conditions (no gap),

AV = (tan 2 + tan $3) - 1 (B3)

and if there is zero exit swirl =1/tan 33) then
tan a2

tan $3 (B4)

B3. - Degree of Reaction

R = Pressure drop in rotor

Pressure drop in stage (B5)

For zero gap (from E s. (23), (24),

R =tan 2 P3 - tan X2 -/

2 tan a2  I - tan 2 03

0 0 2 (B6)

and if the exit swirl is zero = 1/tan P3), then

R = 1- tan a2

2 tan 03 (B7)

B4. - Zweifel Coefficient

= Tangential force per Blade
(Tangential Projected Area) x (Relative Exit Dynamic Head) (B 8)

For constant axial velocity,
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ZW =2 -5-) cos 2 P3 (tan 2 - tan P3)
ba (B9)

where s = Azimutal blade spacing, and b = Axial depth of blading.

B5. - Blade Lift Coefficient

CL = Blade Lift
(Blade Chord) x (Relative Inlet Dynamic Head) (B10)

The ratio of ZW to CL is just the ratio of the reference dynamic heads:

CL = (ZW) COs P2
COS P3 (B 11)
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TABLE 1
MEAN SQUARED ERROR AND MEAN ERROR MAGNITUDE
FOR VARIOUS TIP LOSS CORRELATIONS (FROM REF. 3)

~AilhRE Al/l ) 1XATI Ail
N A hRED XP 2 RED At/hEXP

Kofskey 0.227 -0.093

Ainley 1.186 -0.074

Soderberg 0.638 0.500

Roelke 0.192 0.235
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CASE# AUTHOR 0 To R S/H (0)DATA ( AL. (W)ALC. ALC.

1 KOFSKEY 0.79 7.0 0.02 0.05 1.02 3.032 1.020 -3.199

2A MARSHALL 0.50 1.48 0.32 0.035 1.51 1.156 1.541 -0.105
-ROGO

2B MARSHALL 0.44 1.25 0.35 0.035 1.23 1.068 1.663 +0.076
-ROGO

3 SZANCA- 0.57 1.46 0.47 0.033 1.90 1.449 1.987 -0.336
BEHNING-
SCHUM

4 HOLESKI- 0.26 0.69 0.69 0.031 2.53 1.883 5.644 +0.042
FUTRAL

5 EWEN-HUBER 0.25 1.05 0.45 0.02 1.50 1.294 2.328 0.136
-MrTCHELL

6 .ART 0.51 1.41 0.51 0.02 1.80 1.645 2.304 -0.416

7 YAMAMOTO 0.42 1.52 0.47 0.03 1.63 1.652 2.166 -0.528

8 PAIM 0.28 1.15 0.61 0.01 1.81 2.438 4.155 -0.648

9 HAAS-KOFSKEY 0.35 1.37 0.47 0.03 1.80 1.564 2.251 -0.408

1 KOFSKEY
(MODIFIED) (Assuming To=2) 0.79 2.0 0.02 0.05 1.02 0.973 1.019 -0.025

8 PATEL
(MODIFIED) (Assuming 0.28 0.83 0.61 0.01 1.81 1.823 4.234 -0.052

To=0.83)

TAB3LE 2 Efficiency loss and work defect calculated from theory (assuming zero work done by gap fluid), compared to data. The last two lines
are computed with modified work coefficients chosen for near-axial exit flow
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Table 3 Axial and radial velocities at x=0 for two grid sizes

Grid 16X32

.9750

.9250

.9000

.9750

.9250

.9000

1.36396
.97904
.98285

(Cz)x-o

.13404

.14692

.09922

Grid 24X48

(CX)XmO

1.36279
.97962
.98326

.13677

.15054

.09976
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CASE# AUTHOR ZW 0 TO R 8/H ()TA (P6AL. (W)ALC. KCAL.

1 KOFSKEY 55 0.79 7.0 0.02 0.05 1.02 2.902 4.096 1.025

2A MARSHALL 1.02 0.50 1.48 0.32 0.035 1.51 1.443 2.563 0.346
-ROGO

2B MARSHALL 1.09 0.44 1.25 0.35 0.035 1.23 1.418 2.757 0.290
-ROGO

3 SZANCA- 1.59 0.57 1.46 0.47 0.033 1.90 1.681 3.066 0.369
BEHNING-
SCHUM

4 HOLESKI- 0.35 0.26 0.69 0.69 0.031 2.53 1.661 4.880 0.365
FUTRAL

5 EWEN-HUBER 0.70 0.25 1.05 0.45 0.02 1.50 1.458 3.914 0.411
-MrICHELL

6 LART 0.92 0.51 1.41 0.51 0.02 1.80 1.924 3.500 0.375

7 YAMAMCIO 0.79 0.42 1.52 0.47 0.03 1.63 1.803 3.558 0.452

8 PATEI 0.70 0.28 1.15 0.61 0.01 1.81 1.415 4.813 0.683

9 HAAS-KOFSKEY 0.80 0.35 1.37 0.47 0.03 1.80 1.640 4.714 0.468

1 KOFSKEY
(MODIFIED) (Assuming 'Po=2) 0.55 0.79 2.0 0.02 0.05 1.02 0.926 1.614 0.473

IABLEA Efficiency loss and work defect calculated from theory (including allowance for partial tip loading), compared to data. The last line is
computed with modified work coefficient chosen for near-axial exit flow
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Fig. 1: Contribution to whirl from turbine tip clearance effects
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Fig. 11: Numerical vs. analytical axial velocity profiles at disk
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Fig. 12: Numerical vs. analytical axial velocity profiles at disk
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Fig. 13: Numerical vs. analytical axial velocity profiles at disk
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Fig. 15: Numerical vs. analytical axial velocity profiles at disk
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Fig. 16: Numerical vs. analytical axial velocity profiles at disk
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Fig. 17: Numerical vs. analytical axial velocity profiles at disk
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Fig. 18: Numerical vs. analytical axial velocity profiles at disk
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Fig. 19: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 20: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 21: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 22: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 23: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 24: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 25: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 26: Numerical vs. analytical spanwise velocity profiles at disk
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Fig. 27: Gap fluid does some work on the rotor
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Fig. 29: Planform view of Fig. 28
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Fig. 32: Position and width of rolled-up leakage vortex
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