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Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics
effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system
which may be realized in a variety of plasmonic, photonic, orelectronic contexts. We present the exact many-
body scattering eigenstate obtained by imposing open boundary conditions.Multi-photon bound states appear
in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound
states are shown to have a large effect on scattering of both Fock and coherent state wavepackets, especially in
the intermediate coupling strength regime. We compare the statistics of the transmitted light with a coherent
state having the same mean photon number: as the interactionstrength increases, the one-photon probability
is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body
bound states. This results in non-Poissonian light.

PACS numbers: 03.65.Nk,78.67.Uh,42.50.Ct,42.50.Gy

I. INTRODUCTION

Recently, there has been increasing interest in designing
quantum optical elements based on the strong coupling be-
tween light and matter [1–9]. The strong coupling regime has
been realized in the classic cavity quantum electrodynamics
(QED) systems [10–12], as well as in circuit-QED experi-
ments [13–16]. Several experimental systems have been pro-
posed for realizing devices such as a single-photon transistor
[4, 8] or a quantum switch [6, 7, 17], including surface plas-
mons coupled to a single two-level emitter [4], a supercon-
ducting transmission line resonator coupled to a local super-
conducting charge qubit [6, 7], and propagating photons in a
1D waveguide coupled to a two-level system [18, 19]. Most
of the theoretical work focuses on a single-photon coupled to
a local quantum system modeled as a two-level system (TLS).
The key property used in the device proposals is that, if the
energy of the incident photon is tuned to be on resonance with
the TLS, the system will block the transmission of photons
due to destructive interference between the directly transmit-
ted photon and the photon reemitted by the impurity [4, 6].

A more challenging task is to study the two or more photon
scattering problem in such systems. The two-photon prob-
lem has been addressed by Shen and Fan using a generalized
Bethe-ansatz [18, 19]. They showed that two-photon bound
states emerge as the photons interact with the two-level sys-
tem. Effective attractive and repulsive interactions can be in-
duced depending on the energy of the photons [18]. Such
effective interactions between photons may provide new av-
enues for controlling photon entanglement [20]. However,
the scattering eigenstates were not constructed explicitly in
Ref. 19: the bound states were found by first constructing
Bethe-type scattering eigenstates and then deducing the bound
states via the completeness of the basis. It is difficult to gener-
alize the method in Ref. 19 to solve the three-photon (or more)
scattering problem in which we expect more complicated and
interesting photon correlations.

FIG. 1: (color online) Sketch of the structure considered: a1D con-
tinuum of bosons coupled to a two-level-system.

Here, we present a method to explicitly construct exactn-
photon scattering eigenstates and then use the eigenstatesto
analyze the scattering of Fock- and coherent-state wavepack-
ets. The system consists of a 1D bosonic continuum cou-
pled to a local two-level-system as shown in Figure 1. First,
we explicitly construct then-photon (n = 1 to 4) scattering
eigenstates by imposing open boundary conditions while re-
quiring that the incoming wavefunctions consist entirely of
plane waves [21, 22]. In addition to two-photon bound states,
three-photon bound states appear in the three-photon scatter-
ing eigenstates, and likewisen-photon bound states appear
in the n-photon scattering eigenstates. Second, to show the
significance of these bound states in the scattering of prac-
tical light sources, we study the scattering of one-, two-, and
three-photon Fock state wavepackets. It is shown that the two-
and three-photon bound states dramatically enhance the trans-
mission of two- and three-photon wavepackets, respectively.
Third, we study the scattering of coherent states to determine
the impact of the bound states on both the photon correla-
tion and the statistics of the transmitted and reflected pho-
tons. Strong bunching and antibunching effects appear, and
the statistics are non-Poissonian.

The paper is organized as follows. In Sec. II, we intro-
duce the model, solve for then-photon scattering eigenstates
in the n = 1 to 4 cases, and construct the corresponding S-
matrix based on the Lippmann-Schwinger formalism [23]. In
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Sec. III, the impact of bound states on the photon transmission
is studied for initial Fock-state wavepackets with photon num-
ber of one, two, and three. In Sec. IV, we present the analysis
of photon correlation and statistics for coherent state scatter-
ing. Finally, we conclude in Sec. V.

II. SCATTERING EIGENSTATES

The system we study consists of a two-level system cou-
pled to photons propagating in both directions in a one-
dimensional waveguide [9, 18, 19]. The system is modeled
by the Hamiltonian [18]

H =
∫

dx
1
i

[

a†R(x)
d

dx
aR(x)−a†L(x)

d
dx

aL(x)
]

+
(

ǫ − iΓ′

2

)

|e〉〈e|+
∫

dxVδ(x)
{

[

a†R(x)+a†L(x)
]

S − +h.c.
}

, (1)

where a†R(x)/a†L(x) is the creation operator for a right-
going/left-going photon at positionx, ǫ is the level splitting
between the ground state|g〉 and the excited state|e〉 of the
two level system,Γ′ is the decay rate into channels other
than the 1D continuum,V is the frequncy-independent cou-
pling strength, andS − = |g 〉〈e| is the atomic lowering oper-
ator. Throughout the paper, we set the group velocityc and
Plank’s constant~ to 1 for simplicity.

It is natural to transform to modes which are either even
or odd about the origin,a†e/o(x) ≡

[

a†R(x)± a†L(−x)
]

/
√

2. The
Hamiltonian (1) is then decomposed into two decoupled
modes:H = He+Ho with

He =

∫

dx
1
i

a†e(x)
d
dx

ae(x)+
(

ǫ − iΓ′/2
)

|e〉〈e|

+

∫

dxV̄ δ(x)
[

a†e(x)S −+h.c.
]

, (2a)

Ho =

∫

dx
1
i

a†o(x)
d
dx

ao(x), (2b)

where the effective coupling strength becomes̄V =
√

2V.
Note that the odd mode is free. The number operator for
even bosons isne =

∫

dxa†e(x)ae(x), that for the odd bosons is

no =
∫

dxa†o(x)ao(x), and the occupation number of the two-
level system isntls = |e〉〈e|. BecauseH commutes with certain
number operators, [H, ne+ntls] = [H, no] = 0, the total number
of excitations in both the even and odd spaces are separately
conserved. We will now focus on finding the non-trivial even-
mode solution and then transform back to the left/right repre-
sentation.

A n-excitation state (n = ne+ntls) is given by

|ψn 〉 =
∫

dx1 · · ·dxn gn(x1, · · · , xn)a†e(x1) · · ·a†e(xn)|0,g〉

+

∫

dx1 · · ·dxn−1 en(x1, · · · , xn−1)a†e(x1) · · ·a†e(xn−1)|0,e〉,(3)

where |0,g〉 is the zero photon state with the atom in
the ground state. FromHe|ψn 〉 = En|ψn 〉 , we obtain the
Schrödinger equations

[1
i
(∂1+ · · ·+∂n)−En

]

gn(x1, · · · , xn)

+
V̄
n

[

δ(x1)en(x2, · · · , xn)+ · · ·+ δ(xn)en(x1, · · · , xn−1)
]

= 0,

[1
i
(∂1+ · · ·+∂n−1)−En+ ǫ− iΓ′/2

]

en(x1, · · · , xn−1)

+nV̄gn(0, x1, · · · , xn−1) = 0,
(4)

where the eigenvalueEn = k1+ k2+ · · ·kn, andgn(x1, · · · , xn)
is discontinuous atxi = 0, i = 1, · · ·n. In all the following
calculations, we setgn(0, x1, · · · , xn−1)= [gn(0+, x1, · · · , xn−1)+
gn(0−, x1, · · · , xn−1)]/2 [21, 22]. The scattering eigenstates
gn(x1, · · · , xn) and en(x1, · · · , xn−1) are constructed by im-
posing the boundary condition that, in the incident region,
gn(x1, · · · , xn) is free-bosonic plane wave. That is to say, for
x1, · · · , xn < 0,

gn(x1, · · · , xn) =
1
n!

∑

Q

hk1(xQ1) · · ·hkn(xQn), (5a)

hk(x) =
1
√

2π
eikx . (5b)

For n = 1, plane-wave solutions are sufficient to satisfy
Eq. (4) with eigenenergyE = k:

g1(x) = gk(x) = hk(x)[θ(−x)+ t̄kθ(x)], (6a)

e1 =
i

2
√
πV

(t̄k −1), (6b)

t̄k =
k− ǫ+ iΓ′/2− iΓc/2
k− ǫ+ iΓ′/2+ iΓc/2

, (6c)

whereθ(x) is the step function andΓc = V̄2 = 2V2 is the spon-
taneous emission rate from the two-level-system to the 1D
continuum. Note that̄tk is the transmission coefficient for the
even problem; because the even mode is chiral,|t̄k| = 1 when
Γ′ = 0.

For n = 2, plane-wave solutions are not sufficient to satisfy
Eq. (4). As discussed by Shen and Fan [18, 19], a two-photon
bound state must be included to guarantee the completeness of
the basis. Here, instead of extracting the bound state through
a completeness check [18, 19], we construct the scattering
eigenstate explicitly and find a two-photon bound state con-
tribution to the solution, as has been done in the open inter-
acting resonant-level model [21]. We require the two-photon
solution to satisfy Eq. (5a) in the regionx1, x2 < 0 and solve
for the solution in other regions using Eq. (4). This method
of constructing scattering eigenstates can be generalizedto
three-, four-, and even more photon cases. In the Appendix,
it is shown that the two-photon eigenstate with eigenenergy
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E = k1+ k2 is

g2(x1, x2) = gk1,k2(x1, x2) =
1
2!

[
∑

Q

gk1(xQ1)gk2(xQ2)

+
∑

PQ

B(2)
kP1 ,kP2

(xQ1, xQ2)θ(xQ1)
]

, (7a)

e2(x) =

√
2i

V
[g2(0+, x)−g2(0−, x)], (7b)

B(2)
kP1 ,kP2

(xQ1, xQ2) ≡ −(t̄kP1
−1)(t̄kP2

−1)hkP1
(xQ2)hkP2

(xQ2)

×e(−Γ/2−iǫ)|xQ2−xQ1|θ(xQ2 − xQ1). (7c)

Here,P= (P1,P2) andQ = (Q1,Q2) are permutations of (1,2)
needed to account for the bosonic symmetry of the wave-
funtion, andΓ = Γc + Γ

′ is the total spontaneous emission
rate. The two-body bound-state termB(2)

kP1 ,kP2
(xQ1, xQ2)θ(xQ1)

is generated when there are two photons interacting with the
same two-level-system (TLS), while the TLS can only absorb
one photon at one time. The binding strength of the two pho-
tons depends on the total spontaneous emission rateΓ. Con-
ceptually, two photons have two ways of going through the
TLS. One way is to pass by the TLS independently as plane
waves and gain a phase factor, which is described by the first
term ofg2(x1, x2). The other way is to bind together and form
a bound state, which is described by the second term. The
formation of the bound state can be viewed as a result of stim-
ulated emission: the first photon excites the TLS and the pass-
ing of the second photon stimulates emission of the first pho-
ton into the same right-going state, hence producing the bound
state.

Forn = 3, a procedure similar to that used to solve then = 2
case yields

g3(x1, x2, x3) = gk1,k2,k3(x1, x2, x3) (8a)

=
1
3!

[
∑

Q

gk1(xQ1)gk2(xQ2)gk3(xQ3)+
∑

PQ

gkP1
(xQ1)B

(2)
kP2 ,kP3

(xQ2, xQ3)θ(xQ2)+
∑

PQ

B(3)
kP1 ,kP2 ,kP3

(xQ1, xQ2, xQ3)θ(xQ1)
]

,

e3(x1, x2) =
3i
√

2V
[g3(0+, x1, x2)−g3(0−, x1, x2)], (8b)

B(3)
kP1 ,kP2 ,kP3

(xQ1, xQ2, xQ3) ≡ 2(t̄kP1
−1)(t̄kP2

−1)(t̄kP3
−1)hkP1

(xQ2)hkP2
(xQ3)hkP3

(xQ3)e(−Γ/2−iǫ)|xQ3−xQ1 |θ(xQ32)θ(xQ21), (8c)

whereP = (P1,P2,P3) andQ = (Q1,Q2,Q3) are permutations
of (1,2,3) andθ(xQi j) = θ(xQi) − θ(xQ j ) for short. In addi-
tion to the two-photon bound state, there emerges a three-
body bound stateB(3)

kP1 ,kP2 ,kP3
(xQ1, xQ2 , xQ3)θ(xQ1) in the re-

gion x1, x2, x3 > 0. Conceptually, there are three ways for

FIG. 2: (color online) Schematic of different processes in four-
photon scattering by a two-level system. The plane waves arerepre-
sented by wiggly lines, while the many-body bound states arerepre-
sented by the ovals.

the three photons to pass by the atom: (i) all three photons
propagate as independent plane waves; (ii) two photons form
a two-body bound state, while the other one propagates in-
dependently as a plane wave; and (iii) all three photons bind
together and form a three-body bound state. These three pro-
cesses are described by the first, second, and third terms of
g3(x1, x2, x3), respectively.

This simple picture can be applied to a generaln-photon
scattering process. For example, in the case of four-photon
scattering, there are five ways for the four photons to pass
by the atom as illustrated in Figure 2: (i) all four propagate
as independent plane waves; (ii) two photons form a two-
body bound state, while the other two propagate indepen-
dently as plane waves; (iii) three photons form a three-body
bound state, while the other one propagate independently asa
plane wave; (iv) four photons form two independent two-body
bound states; and (v) four photons form a four-body bound
state. These five processes can be identified as the five terms
of g4(x1, x2, x3, x4) in the four-photon solution, which is given
by
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g4(x1, x2, x3, x4) =
1
4!

[
∑

Q

gk1(xQ1)gk2(xQ2)gk3(xQ3)gk4(xQ4)+
∑

PQ

gkP1
(xQ1)gkP2

(xQ2)B(2)
kP3,kP4

(xQ3, xQ4)θ(xQ3) (9a)

+
∑

PQ

gkP1
(xQ1)B(3)

kP2,kP3 ,kP4
(xQ2, xQ3, xQ4)θ(xQ2)+

∑

PQ

B(2)
kP1 ,kP2

(xQ1, xQ2)B(2)
kP3 ,kP4

(xQ3, xQ4)θ(xQ1)θ(xQ3)

+
∑

PQ

B(4)
kP1 ,kP2 ,kP3 ,kP4

(xQ1, xQ2 , xQ3, xQ4)θ(xQ1)
]

,

e4(x1, x2, x3) =
4i
√

2V
[g4(0+, x1, x2, x3)−g4(0−, x1, x2, x3)], (9b)

B(4)
kP1 ,kP2 ,kP3 ,kP4

(xQ1, xQ2, xQ3, xQ4) ≡ −22(t̄kP1
−1)(t̄kP2

−1)(t̄kP3
−1)(t̄kP4

−1)hkP1
(xQ2)hkP2

(xQ3)hkP3
(xQ4)hkP4

(xQ4)

×e(−Γ/2−iǫ)|xQ4−xQ1 |θ(xQ4 − xQ3)θ(xQ3 − xQ2)θ(xQ2 − xQ1). (9c)

The scattering eigenstates of a generaln-photon problem
can be constructed recursively in a similar way: the only un-
known term ingn(x1, · · · , xn) is then−photon bound state as
all the other terms can be constructed from the solutions of
the 1,2, · · · , (n−1)-photon problems. We extrapolate from the
results ofn = 2-4 that, for generaln (≥ 2), then-body bound
state assumes the form

Bk1,...,kn(x1, . . . , xn) = −(−2)n−2
n
∏

i=1

(t̄ki −1)
n−1
∏

i=1

θ(xi+1− xi)

×hk1(xn)hk2(x2) · · ·hkn−1(xn−1)hkn(xn)e(−Γ/2−iǫ)|xn−x1|. (10)

We have verified this expression forn= 5. Thus we have given
explicit formulas for constructing the exactn-photon scatter-
ing eigenstates.

The exact scattering eigenstates can be used to construct the
scattering matrix. According to the Lippmann-Schwinger for-
malism [23], one can read off the “in” state (before scattering)
and the “out” state (after scattering) of a generaln-photon S-
matrix fromgn(x1, · · · , xn) in the input region (x1 < 0, · · · , xn <

0) and in the output region (x1 > 0, · · · , xn > 0), respectively.
The “in” and “out” states of one and two photon scattering
matrices are given by

|φ(1)
in 〉 e =

∫

dxhk(x)a†e(x)|0〉 (11a)

|φ(1)
out 〉 e =

∫

dx t̄khk(x)a†e(x)|0〉, (11b)

and

|φ(2)
in 〉 e =

∫

dx1dx2
1
2!

[
∑

Q

hk1(xQ1)hk2(xQ2)
]

a†e(x1)a†e(x2)|0〉

|φ(2)
out 〉 e =

∫

dx1dx2
1
2!

[
∑

Q

t̄k1 t̄k2hk1(xQ1)hk2(xQ2)

+
∑

PQ

BkP1 ,kP2
(xQ1, xQ2)

]

a†e(x1)a†e(x2)|0〉, (12)

and similarly for three and four photons. The corresponding
S-matrices are

S (n)
e =

∫

dk1 · · ·dkn
1
n!
|φ(n)

out 〉 ee 〈φ
(n)
in |. (13)

Notice that the unitarity of the S-matrix is automatically satis-
fied since the incoming state|φ(n)

in 〉 e is a complete basis set in
the even space [19, 23].

The S-matrix in the odd space is just the identity operator
because the odd mode is free and decoupled from the impurity
and the even mode,

S (n)
o =

∫

dk1 · · ·dkn
1
n!
|φ(n)

in 〉o o〈φ(n)
in |, (14a)

|φ(n)
in 〉 o =

∫

dx1 · · ·dxn
1
n!

∑

Q

n
∏

i=1

hki(xQi)a
†
e(xi)|0〉 . (14b)

Finally, we wish to construct the scattering matrix in
the right/left representation based on the S-matrices in the
even/odd representation. For a generaln-photon scattering
problem, the possible scattering channels are thati photons
undergo scattering in the even space andn− i photons undergo
scattering in the odd space, withi running from 0 ton. In ad-
dition, the even and odd spaces are decoupled from each other.
Therefore, then-photon S-matrix is

S (n) =

n
∑

i=0

S (i)
e ⊗S (n−i)

o . (15)

We will use this S-matrix to study the scattering of Fock states
and coherent state wave packets in the right/left space in the
subsequent sections.

III. SCATTERING OF FOCK STATES

In order to show the significance of the many-body bound
states, we study the scattering of a Fock state off of a two-
level system. We assume that the incident mode propagates
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to the right and the two level system is initially in the ground
state. We use the S-matrices defined in Eq. (15) to evaluate
the transmission and reflection coefficients. In practice, any
state that contains a finite number of photons must have the
form of a wave-packet. Thus, we start with the definition of
the continuous-mode photon wave-packet creation operatorin
momentum space [24]

a†α =
∫

dkα(k)a†(k)|0〉, (16)

with the normalization condition
∫

dk |α(k)|2 = 1. The corre-
sponding continuous-moden-photon Fock state is

|nα〉 =
(a†α)n

√
n!
|0〉 , (17)

and the output state after it scatters off the TLS is

|out(n)
α 〉 = S (n)|nα〉. (18)

To obtain the scattering probabilities of a Fock state
from the S-matrix found in Section II, we follow the fol-
lowing general procedure. (i) First, we write ann-photon
input Fock state traveling to the right in momentum
space: |nα〉 = (1/

√
n!)
∫

dk1 · · ·dkn α(k1) · · ·α(kn)|k1, · · · ,kn〉;
(ii) Next, we apply the S-matrix on the input
state and find the output state|out(n)

α 〉 = S (n)|nα〉 =
(1/
√

n!)
∫

dk1 · · ·dknα(k1) · · ·α(kn)S (n)|k1, · · · ,kn〉 in
the even/odd basis; (iii) We transform back to the
right/left basis. Then we project the output state
onto the n-photon (right/left-going) momentum basis
|k1, · · · ,kn〉R, · · · , |k1, · · · ,ki〉R ⊗ |ki+1, · · · ,kn〉L, · · · , |k1, · · · ,kn〉L
and take the absolute value square to obtain the probabilities
P(k1, · · · ,kn) of finding the output state in|k1, · · · ,kn〉; (iv)
Finally, we integrateP(k1, · · · ,kn) over k1, · · · ,kn to obtain
the total transmission and reflection probabilities. Here,
a right/left-going state is defined by a positive/negative
momentum, i.e.,k1 > 0, · · · ,kn > 0 for |k1, · · · ,kn〉R and
k1 < 0, · · · ,kn < 0 for |k1, · · · ,kn〉L.

For convenience, we choose Gaussian type wavepackets
with the spectral amplitude

α(k) = (2π∆2)−1/4exp
(

− (k− k0)2

4∆2

)

. (19)

For all of the numerical examples in this paper, we choose
k0 = ǫ: the central frequency of the wavepacket is on reso-
nance with the TLS, a condition which makes the interaction
between the photons and the TLS strongest. We take the cen-
tral momentumk0≫ ∆ so that the narrow-band condition is
satisfied. In particular, we choose∆ = 0.1. However, we em-
phasize that all the conclusions we draw are independent of
the choice of∆. That is because all the transmission and re-
flection probabilities are functions ofΓ/∆, whereΓ = 2V2. A
different choice of∆ does not change any of the qualitative
results, but merely rescales the spontaneous emission rateΓ.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

V

P
(1

)

 

 

P(1)
R

P(1)
L

FIG. 3: (color online) Single-photon transmission (P(1)
R ) and reflec-

tion (P(1)
L ) probabilities as a function of coupling strengthV . The

incident photon is on resonance with the two level system (k0 = ǫ)
and we have considered the lossless caseΓ′ = 0. (∆ = 0.1.)

A. Single-Photon Fock State Scattering

The probabilities of transmission (P(1)
R ) and reflection (P(1)

L )
for a single-photon Fock state are found as

P(1)
R =

∫

k>0
dk |〈k|out(1)

α 〉|2 =
∫

k>0
dk α(k)2|tk|2, (20a)

P(1)
L =

∫

k<0
dk |〈k|out(1)

α 〉|2 =
∫

k>0
dk α(k)2|rk|2, (20b)

wheretk = (t̄k+1)/2 andrk = (t̄k−1)/2 andt̄k is the transmis-
sion coefficient defined above for the even mode [Eq. (6c)].

Note that the propagation of a single-photon is strongly
modulated by the TLS as we turn on the coupling. In the
strong-coupling limit, a single-photon is perfectly reflected
and the two-level atom acts as a mirror. This perfect reflection
is due to destructive interference between the directly trans-
mitted state and the state re-emitted from the TLS. A single-
photon transistor [4] and a quantum switch [6] have been pro-
posed based on this perfect reflection.

B. Two-Photon Fock State Scattering

For two incident photons, following the general procedure
above, we find that the transmission and reflection probabili-
ties are

P(2)
RR =

∫

k1>0,k2>0
dk1dk2

1
2!
|〈k1,k2|out(2)

α 〉|2, (21a)

P(2)
RL =

∫

k1>0,k2<0
dk1dk2 |〈k1,k2|out(2)

α 〉|2, (21b)

P(2)
LL =

∫

k1<0,k2<0
dk1dk2

1
2!
|〈k1,k2|out(2)

α 〉|2, (21c)

whereP(2)
RR, P(2)

RL andP(2)
LL are, respectively, the probability for

two photons to be transmitted (right-going), one transmitted
and one reflected, and two photons reflected (left-going).
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To show the significance of the bound state in the propaga-
tion of multi-photon Fock states, we separate each of the prob-
abilitiesP(2)

RR, P(2)
RL andP(2)

LL into two parts. One part is the con-
tribution from only the plane wave term (labeled PW), which
is the direct transmission or reflection. The other is the con-
tribution from all the other terms (labeled BS), including the
bound state term as well as the interference term between the
plane wave and bound state. Notice that the BS part vanishes
in the absence of bound state, as in the case of single-photon
scattering. Therefore, it is a manifestation of the nonlinear
effect caused by the interaction between the TLS and two or
more photons. As an example,P(2)

RR split into PW and BS parts
is

P(2)
RR =

∫

k1>0,k2>0
dk1dk2|t(k1,k2)+B(k1,k2)|2 (22a)

= (P(2)
RR)PW+ (P(2)

RR)BS, (22b)

(P(2)
RR)PW =

∫

k1>0,k2>0
dk1dk2|t(k1,k2)|2, (22c)

(P(2)
RR)BS =

∫

k1>0,k2>0
dk1dk2

[

t∗(k1,k2)B(k1,k2) (22d)

+t(k1,k2)B∗(k1,k2)+ |B(k1,k2)|2
]

t(k1,k2) = α(k1)α(k2)tk1tk2 , (22e)

B(k1,k2) =
[ −i/2π

k1− ǫ+ iΓ
2

+
−i/2π

k2− ǫ + iΓ
2

]

(22f)

×
∫

k′>0
dk
′
α(k

′
)α(k1+ k2− k

′
)rk′ rk1+k2−k′ .

Figure 4 shows the three transmission probabilitiesP(2)
RR,

P(2)
RL, andP(2)

LL for our standard parameters, with the contribu-
tions from the plane wave and bound state plotted separately
in panels (a)-(c).Note that the presence of the bound state has
a very substantial effect on these transmission probabilities.
As shown in panels (a) and (b),P(2)

RR and P(2)
RL are enhanced

by the formation of the bound state. This is mainly due to
constructive interference between the plane wave and bound
state. In contrast, panel (c) shows thatP(2)

LL is strongly reduced
in the presence of the bound state because of destructive in-
terference between the plane wave and bound state (change
from∼ 0.8 to∼ 0.4 atV = 0.5). Therefore, the presence of the
bound state tends toincrease the one-photon and two-photon
transmission, whilesuppressing the two-photon reflection.

A particularly interesting aspect of the results in Fig 4 is
that the effect of the bound state is most prominent in the
intermediate coupling regime, not at the strongest coupling.
This is because, first, in the weak coupling limit, the inter-
action is too weak to produce a pronounced bound state for
two-photon scattering, while, second, in the strong coupling
limit, the TLS responds to the first photon too quickly (in a
duration of order 1/Γ with Γ = 2V2) for the second photon
to produce a significant nonlinear effect. (The formation of
the bound state requires the presence of both photons at the
two-level system.) The optimal coupling strengthVm for pro-
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(a) (b)

(c) (d)

FIG. 4: (color online) Two-photon transmission and reflection proba-
bilities as a function of coupling strengthV . (a) Probability that both
photons are transmitted (and hence are right-going,P(2)

RR). (b) Prob-
ability that one photon is transmitted and one reflected (right-left,
P(2)

RL). (c) Probability that both photons are reflected (both left-going,

P(2)
LL). (d) The three processes on a single plot. The label PW refers

to the contribution from the plane-wave term only, while BS refers
to all the other contributions involving bound-state terms. The inci-
dent photons are on resonance with the two-level system (k0 = ǫ), we
consider the lossless caseΓ′ = 0, and∆ = 0.1. Notice the large effect
of the bound state on these quantities.

ducing nonlinear (bound state) effects lies at intermediate cou-
pling, when the spontaneous emission rateΓ is on the order of
the wavepacket width∆ (Vm ∼ 0.4 when∆ = 0.1).

C. Three-Photon Fock State Scattering

Following the general procedure for obtaining scattering
probabilities, the transmission and reflection probabilities for
three-photon Fock state scattering are defined as

P(3)
RRR =

∫

k1>0,k2>0,k3>0
dk1dk2dk3

1
3!
|〈k1,k2,k3|out(3)

α 〉|2,

P(3)
RRL =

∫

k1>0,k2>0,k3<0
dk1dk2dk3

1
2!
|〈k1,k2,k3|out(3)

α 〉|2,

P(3)
RLL =

∫

k1>0,k2<0,k3<0
dk1dk2dk3

1
2!
|〈k1,k2,k3|out(3)

α 〉|2,

P(3)
LLL =

∫

k1<0,k2<0,k3<0
dk1dk2dk3

1
3!
|〈k1,k2,k3|out(3)

α 〉|2,

(23)

whereP(3)
RRR, P(3)

RRL, P(3)
RLL, andP(3)

LLL are the probabilities for
three photons being transmitted (all right-going), two trans-
mitted and one reflected, one transmitted and two reflected,
and all three reflected (left-going), respectively. As in the two-
photon scattering case, we separate each probability into two
parts: the contribution of only the plane wave term (labeled
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FIG. 5: (color online) Three-photon transmission and reflection probabilities as a function of coupling strength V. (a)Probability of all three
photons transmitted (P(3)

RRR). (b) Probability of two photons transmitted and one reflected (P(3)
RRL). (c) Probability of one photon transmitted and

two photons reflected (P(3)
RLL). (d) Probability of all three photons reflected (P(3)

LLL). (e) P3 all together. The label PW refers to the contribution
from only the plane wave term, while BS refers to all the othercontributions, involving bound state terms. The incident photons are on
resonance with the two level system (k0 = ǫ), we consider the lossless caseΓ′ = 0, and∆ = 0.1. Note the large bound state effects.

PW) and the contribution from all the other terms (labeled
BS), including the bound states as well as the interference be-
tween the plane wave and bound states. The probabilities and
the decomposition into PW and BS parts are plotted in Fig-
ure 5 for our usual parameters.

Figure 5 shows that the bound state contribution to the
transmission probabilities is, as for two photons, very substan-
tial. In panels (a) and (b), the BS parts ofP(3)

RRR andP(3)
RRL are

positive; thus, these probabilities are enhanced by the bound
states. Panel (d) shows thatP(3)

LLL is suppressed by the bound
state contribution for arbitrary coupling strength. In contrast,
as we increase the coupling strength,P(3)

RLL is first suppressed
and then enhanced by the BS part as shown in Figure 5(c).
Tuning the coupling strength changes the relative phase be-
tween the plane wave and bound state parts; forP(3)

RLL, the in-
terference between them happens to change from destructive
to constructive as the coupling strength increases. Finally, as
in the two-photon case, the most pronounced bound state ef-
fects occur in the intermediate coupling regime instead of the
strong coupling limit.

To sum up this section, we point out that all the curves
plotted in Figs. 3-5 are universal in terms of the choice of∆.
Because∆ appears in the scattering probabilities [P(1)

R , etc.]
only in the ratioΓ/∆, a different choice of∆ (i.e., other than
0.1 used in the figures) is equivalent to rescalingV and does
not change the shape of the curves. Therefore, the substan-
tial bound state effects observed here are intrinsic for multi-
photon scattering processes in this system, independent ofthe
details of the wavepackets.

IV. SCATTERING OF COHERENT-STATES

We now turn to studying the scattering of coherent states
in order to show, first, the strong photon-photon correla-
tion induced by the the two-level system and, second, the
change in photon number statistics. The incident coherent
state wavepacket is defined by [24]

|α〉 = ea†α−n̄/2|0〉, (24)

with a†α =
∫

dkα(k)a†(k)|0〉, and mean photon number ¯n =
∫

dk|α(k)|2. A Gaussian type wavepacket is chosen

α(k) =

√
n̄

(2π∆2)1/4
exp
(

− (k− k0)2

4∆2

)

; (25)

for numerical evaluations, we use, as before,∆ = 0.1 andk0 =

ǫ ≫ ∆. The output state|outα〉 is then

|outα〉 =
∑

n

S (n)|α〉 (26)

We assume the incident coherent state is right-going and the
two-level system is in the ground state initially. We present
the analysis of second-order correlation and photon number
statistics in the transmitted field.

A. Correlation

The second-order correlation function of the transmitted
field is defined as [24]

g(2)
R (x2− x1) =

〈outα|a†R(x1)a†R(x2)aR(x2)aR(x1)|outα〉

〈outα|a†R(x1)aR(x1)|outα〉2
. (27)

We consider the mean photon number ¯n ≤ 1.0. In this case,
the probability to findn ≥ 3 number states is much smaller
than that ofn = 2 number states. Moreover, the contributions
from n ≥ 3 states tog(2) are at least one order of∆ (= 0.1)
smaller than that from then = 2 state. Therefore, we neglect
the contributions fromn ≥ 3 number states. The second-order
correlation function simplifies to

g(2)
R (x2− x1)=

∣

∣

∣

∫

dk1dk2α(k1)α(k2)(tk1tk2 − rk1rk2e−
Γ(x2−x1)

2 )
∣

∣

∣

2

∣

∣

∣

∫

dk1dk2α(k1)α(k2)tk1tk2

∣

∣

∣

2
.

(28)
The contributions from the directly transmitted state and

the bound state can be identified as the first term and sec-
ond term in the numerator ofg(2)

R (x2 − x1) in Eq. (28). In

the absence of the bound state,g(2)
R (x2− x1) is always equal

to unity. As we turn on the interaction, the interference be-
tween the directly transmitted state and the bound state will
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(a) V=0.16 (b) V=0.26

(c) V=0.34 (d) V=0.38

(e) V=0.40 (f) V=0.45

FIG. 6: (color online) Second-order correlation of the transmitted
field given an incident coherent state with ¯n ≤ 1 at various cou-
pling strengthsV to the 1D continuum. (a)V = 0.16, (b)V = 0.26,
(c) V = 0.34, (d)V = 0.38, (e)V = 0.40, (f) V = 0.45. The sponta-
neous emission rate to channels other than the 1D continuum is set
to Γ′ = 0.10. Notice that the correlation behavior is very sensitive to
the coupling strength to 1D continuum, showing both bunching and
antibunching.

give rise to interesting correlation behavior. Figure 6 shows
the second-order correlation as a function ofΓ(x2− x1) at var-
ious coupling strengths,V, to the 1D mode withΓ′ = 0.1. In
the weak coupling limit (V = 0.16) as shown in Figure 6(a),
the directly transmitted state dominates andg(2)

R (0) is slightly
smaller than 1. We observe a slight initial antibunching. AsV
increases [Figure 6(b)-(c)],g(2)

R (0) further decreases and the
initial antibunching gets stronger and becomes strongest at
V = 0.34 wheng(2)

R (0)= 0. Notice that the antibunching is get-
ting weaker as one moves away from the origin forV ≤ 0.34.
Further increase ofV starts to change the initial antibunching
[V = 0.38, g(2)

R (0)< 1] to bunching [V = 0.45, g(2)
R (0)> 1] as

shown in Figure 6(d)-(f). In this case, the bound state starts
to dominate the correlation behavior. It is remarkable that,
for V > 0.34, the initial antibunching (V < 0.40) or bunch-
ing (V > 0.40) is followed by a later antibunchingg(2)

R (0)= 0,
which is caused by the cancellation of the directly transmitted
state and the bound state. The formation of the bound state
gives rise to a rich phenomenon of photon-photon correlation,
which is very sensitive to the coupling strengthV to the 1D
mode. Effective attractive or repulsive interaction between
photons is induced by the presence of a single two-level sys-
tem [18].

Our findings agree with the results obtained by Changet al.
[4] using a very different approach. In the losslessΓ′ = 0 case,
as we increase the coupling strength, the transmission for indi-
vidual photons is reduced rapidly [see, for example, Figure3
and Figure 4(a)]. But the two-photon bound state can strongly

V

n̄

(P
0
)
Poisson

/P
0

 

 

0 0.5 1

0.2

0.4

0.6

0.8

1

0.94

0.96

0.98

1

1.02

1.04

V

n̄

(P
1
)
Poisson

/P
1

 

 

0 0.5 1

0.2

0.4

0.6

0.8

1

1

1.5

2

V

n̄

(P
2
)
Poisson

/P
2

 

 

0 0.5 1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

V

n̄

(P
3
)
Poisson

/P
3

 

 

0 0.5 1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

1.2

FIG. 7: (color online) Photon number distribution of the transmitted
field compared with a coherent state. We considered the lossless
caseΓ′ = 0. The statistics is non-Possonian with the 2 and 3 photon
content enhanced.

enhance the transmission. Therefore, we will observe a strong
initial bunching followed by a later antibunching, similarto
Figure 6(f).

B. Photon Number Distribution

Given the output state|outα〉, we measure the photon num-
ber distribution in the transmitted field following the general
procedure described in Sec. III.

P0 = |〈outα|(|0〉R⊗ |I〉L)|2,

P1 =

∫

k>0
dk|〈outα|(|k〉R⊗ |I〉L)|2,

P2 =

∫

k1,k2>0
dk1dk2

1
2!
|〈outα|(|k1,k2〉R⊗ |I〉L)|2,

P3 =

∫

k1,k2,k3>0
dk1dk2dk3

1
3!
|〈outα|(|k1,k2,k3〉R⊗ |I〉L)|2,

(29)

where|I〉L is the complete basis set in the left-going photon
space. We consider a mean photon number ¯n ≤ 1.0 in the in-
cident coherent state. In this case, the probability to find the
four photon state is negligible (≤ 1.6%). We compare the pho-
ton number distributionPn of the output state with (Pn)Poisson
of a coherent state having the same mean photon number.

Figure 7 shows the ratio between (Pn)Poissonand Pn as a
function of the coupling strengthV and the mean photon num-
ber n̄ of the incident coherent state. The zero-photon proba-
bility does not deviate from that of a coherent state much in
the whole parameter region we considered. The one-photon
probability is smaller than the corresponding probabilityin a
coherent state. In contrast, the two- and three-photon proba-
bilities are much larger than the ones in a coherent state, espe-
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cially in the strong coupling regime. This is to say, the inter-
action between photons and the two-level system redistributes
the probabilities among different photon numbers.The one-
photon probability is reduced and is redistributed to the two-
and three-photon probabilities. This is mainly because the
bound states enhance the transmission of multi-photon states
as we have shown in Sec. III B and C. In conclusion, we ob-
tain a non-Poissonian light source after the scattering. Itis
perhaps possible to use this strongly-correlated light source to
perform passive decoy-state quantum key distribution in order
to raise the key generation rate [25–28].

V. CONCLUSION

In this paper, we present a general method to construct the
exact scattering eigenstates for the problem ofn-photons in-
teracting with a two-level system. Many-body bound states
appear in the presence of the coupling between photons and
the two-level system. Furthermore, the scattering matrices are
extracted using the Lippmann-Schwinger formalism. We em-
phasize that the completeness of the S-matrices is guaranteed
by imposing open boundary conditions and requiring the inci-
dent field to be free plane waves. Based on the S-matrices, we
study the scattering of the Fock states and coherent states.The
bound states are shown to enhance the transmission of multi-
photon states and suppress the transmission of single-photon
states. In the transmitted field of coherent state scattering, the
photons exhibit strong bunching or antibunching effects de-
pending on the coupling strength. This is a manifestation of
the many-body bound states. Finally, we determine the pho-
ton number distribution and find that the one-photon state is
transferred to two- and three-photon states. This results in a
non-Poissonian light source which might have applicationsin
quantum information.
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Appendix: Two-photon Scattering Eigenstate

In this appendix, we show in detail how we obtain the two-
photon scattering eigenstate [Eq. (7)] by imposing the open
boundary condition Eq. (5). The equations of motion for the

two-photon case read

[1
i
(∂1+∂2)−E2

]

g2(x1, x2)+

V̄
2

[

δ(x1)e2(x2)+ δ(x2)e2(x1)
]

= 0, (A1a)

[1
i

d
dx
−E2+ ǫ− iΓ′/2

]

e2(x)+2V̄g2(0, x) = 0, (A1b)

which can be cast into the following set of equations

[1
i
(∂1+∂2)−E2

]

g2(x1, x2) = 0, (A2a)

e2(x) =
2i

V̄
[g2(0+, x)−g2(0−, x)], (A2b)

[1
i

d
dx
−E2+ ǫ− iΓ′/2

]

e2(x)

+V̄[g2(0+, x)+g2(0−, x)] = 0, (A2c)

e2(0+) = e2(0−). (A2d)

Here,g2(x1, x2) is discontinuous atx1 = 0, x2 = 0 and we set
g2(x,0) = [g2(x,0+)+ g2(x,0−)]/2. We eliminatee2(x) from
the above equations and obtain

[1
i
(∂1+∂2)−E2

]

g2(x1, x2) = 0, (A3a)

[1
i

d
dx
−E2+ ǫ − iΓ′/2− iΓc/2

]

g2(0+, x)

=
[1

i
d

dx
−E2+ ǫ − iΓ′/2+ iΓc/2

]

g2(0−, x), (A3b)

g2(0+,0+)−g2(0
−,0+) = g2(0−,0+)−g2(0

−,0−). (A3c)

Because of the bosonic symmetry, we can solve forg2(x1, x2)
by first considering the half spacex1 ≤ x2 and then extend-
ing the result to the full sapce. In this case, there are three
quadrants in real space:1© x1 ≤ x2 < 0; 2© x1 < 0 < x2; 3©
0< x1 ≤ x2. Eq. (A3b) can be rewritten as two separate equa-
tions

[1
i

d
dx
−E2+ ǫ − iΓ′/2− iΓc/2

]

g 2©
2 (x,0+) =

[1
i

d
dx
−E2+ ǫ− iΓ′/2+ iΓc/2

]

g 1©
2 (x,0−), for x < 0, (A4a)

[1
i

d
dx
−E2+ ǫ − iΓ′/2− iΓc/2

]

g 3©
2 (0+, x) =

[1
i

d
dx
−E2+ ǫ− iΓ′/2+ iΓc/2

]

g 2©
2 (0−, x), for x > 0. (A4b)

Substitutingg 1©
2 (x1,0−) [Eq. (5)] into Eq. (A4a), we solve to

find

g 2©
2 (x,0+)=

1
2!

[

t̄k2

eik1x

2π
+ t̄k1

eik2x

2π

]

+Ae[−Γ/2+i(k1+k2−ǫ)]x, (A5)
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whereA is a constant to be determined. Applying the con-
straint Eq. (A3a) tog 2©

2 (x,0+), we obtain

g 2©
2 (x1, x2) =

1
2!

[

t̄k2

ei(k1x1+k2x2)

2π
+ t̄k1

ei(k2x1+k1x2)

2π

]

+Ae(Γ/2+iǫ)(x2−x1)ei(k1+k2)x1 . (A6)

From Eq. (A6), we can identifyA to be zero: otherwise, the
solution is not normalizable [eΓ(x2−x1)/2 is divergent whenx2−
x1→∞]. Hence,g2(x1, x2) in region 2© is given by

g 2©
2 (x1, x2) =

1
2!

[

t̄k2

ei(k1x1+k2x2)

2π
+ t̄k1

ei(k2x1+k1x2)

2π

]

. (A7)

Substituting Eq. (A7) into Eq. (A4b) yields

g 3©
2 (0+, x)=

1
2!

t̄k1 t̄k2

[eik2x

2π
+

eik1x

2π

]

+Be[−Γ/2+i(k1+k2−ǫ)]x, (A8)

whereB is a constant to be determined. Again, applying the
constraint Eq. (A3a) tog 3©

2 (0+, x), we obtain

g 3©
2 (x1, x2) =

1
2!

t̄k1 t̄k2

[ei(k1x1+k2x2)

2π
+

ei(k1x2+k2x1)

2π

]

+Be(−Γ/2−iǫ)(x2−x1)ei(k1+k2)x2 . (A9)

Finally, B is found by substituting Eq. (5), Eq. (A7), and
Eq. (A9) into the continuity condition Eq. (A3c), yielding

B = −
(t̄k1 −1)(t̄k2−1)

2π
. (A10)

Extending these solutions from the half space to the full space
using the bosonic symmetry gives rise to the two-photon scat-
tering eigenstate given in Eq. (7) of the main text.
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