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Strong coupling between a two-level system (TLS) and ba@sormédes produces dramatic quantum optics
effects. We consider a one-dimensional continuum of bosonpleduo a single localized TLS, a system
which may be realized in a variety of plasmonic, photonicelectronic contexts. We present the exact many-
body scattering eigenstate obtained by imposing open layyrabnditions.Multi-photon bound states appear
in the scattering of two or more photons due to the couplingvéen the photons and the TLS. Such bound
states are shown to have a largeeet on scattering of both Fock and coherent state wavemasecially in
the intermediate coupling strength regime. We comparetttessics of the transmitted light with a coherent
state having the same mean photon number: as the interattength increases, the one-photon probability
is suppressed rapidly, and the two- and three-photon pilitiesbare greatly enhanced due to the many-body
bound states. This results in non-Poissonian light.

PACS numbers: 03.65.Nk,78.67.Uh,42.50.Ct,42.50.Gy

I. INTRODUCTION

Recently, there has been increasing interest in designing y

guantum optical elements based on the strong coupling be-
tween light and matter [1+-9]. The strong coupling regime has A A AN

been realized in the classic cavity quantum electrodynsimic

(QED) systems|[10-12], as well as in circuit-QED experi-

ments [13=16]. Several experimental systems have been pretG. 1: (color online) Sketch of the structure consideredDacon-
posed for realizing devices such as a single-photon tri@msis tinuum of bosons coupled to a two-level-system.

[4, €] or a quantum switch [6, 7, 17], including surface plas-

mons coupled to a single two-level emitter [4], a supercon-

ducting transmission line resonator coupled to a local supe pHere we present a method to explicitly construct exact

conducting charge qubit|[5! 7], and propagating photons in &nqon scattering eigenstates and then use the eigenstates

1D waveguide coupled to a two-level system! [1€, 19]. Mostypayze the scattering of Fock- and coherent-state wakepac
of the theoretical work focuses on a single-photon coupled t o5 " The system consists of a 1D bosonic continuum cou-

alocal quantum system modeled as a two-level system (TLS)|eq tg a local two-level-system as shown in Figlre 1. First,
The key prop_erty used in the_ device proposals is that, if the‘;ve explicitly construct thew-photon f = 1 to 4) scattering
energy of the incident photon is tuned to be_on.resonance W'tBigenstates by imposing open boundary conditions while re-
the TLS, the system will block the transmission of photonsgiring that the incoming wavefunctions consist entirefy o
due to destructive interference between the directly raiRS  pane waved [21, 22]. In addition to two-photon bound states
ted photon and the photon reemitted by the impurity [4, 6].  three-photon bound states appear in the three-photorscatt
A more challenging task is to study the two or more photoning eigenstates, and likewisephoton bound states appear
scattering problem in such systems. The two-photon probin the n-photon scattering eigenstates. Second, to show the
lem has been addressed by Shen and Fan using a generalizégnificance of these bound states in the scattering of prac-
Bethe-ansatzZ [18, 19]. They showed that two-photon bountical light sources, we study the scattering of one-, twod a
states emerge as the photons interact with the two-level syghree-photon Fock state wavepackets. Itis shown that the tw
tem. Hfective attractive and repulsive interactions can be inand three-photon bound states dramatically enhance the tra
duced depending on the energy of the photons [18]. Suchnission of two- and three-photon wavepackets, respegtivel
effective interactions between photons may provide new avThird, we study the scattering of coherent states to determi
enues for controlling photon entanglement! [20]. Howeverthe impact of the bound states on both the photon correla-
the scattering eigenstates were not constructed explicitl tion and the statistics of the transmitted and reflected pho-
Ref[19: the bound states were found by first constructingons. Strong bunching and antibunchirfieets appear, and
Bethe-type scattering eigenstates and then deducing thebo  the statistics are non-Poissonian.
states via the completeness of the basis. Itfisodilt to gener- The paper is organized as follows. In Sec.Il, we intro-
alize the method in Ref. 19 to solve the three-photon (or )noreduce the model, solve for thephoton scattering eigenstates
scattering problem in which we expect more complicated andh then = 1 to 4 cases, and construct the corresponding S-
interesting photon correlations. matrix based on the Lippmann-Schwinger formalism [23]. In
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Sec. lll, the impact of bound states on the photon transorissi where |0,g) is the zero photon state with the atom in
is studied for initial Fock-state wavepackets with photamna  the ground state. Fromglyn) = Enlyn), we obtain the
ber of one, two, and three. In Sec. IV, we present the analysiSchrodinger equations

of photon correlation and statistics for coherent statéteca

ing. Finally, we conclude in Sec. V. 1
¢ Y [i_(al+"'+an)—En]gn(xl,"',Xn)

v
Il. SCATTERING EIGENSTATES + ﬁ[é(xl)en(Xz,--- Xa) + -+ 00)en(Xe, - Xa-1)| = O,

The system we study consists of a two-level system cou- [__1((91+...+3n_1) - En+e—il"’/2]en(xl,--- , Xn-1)
pled to photons propagating in both directions in a one- "I _

dimensional waveguidél[9, 18,119]. The system is modeled +NVgn(0,X1,- -+, Xn-1) = 0,
by the Hamiltonian [1/8] 4)

1 d d where the eigenvaluBp = ky + ko + - - - kn, andgn(Xa, -+, Xn)
H= fdx,_[aTR(x)_aR(x)_aI(x)_aL(x)] is discontinuous ax = 0,i = 1,---n. In all the following
! dx dx calculations, we s@(0, X1, , Xn-1) = [On(0", X1, -+ , Xn_1) +
TR on(07,x1,---, X-1)]/2 [21,122]. The scattering eigenstates
ir + + _ .
+(e—7)|e)(e|+fdecS(x){[aR(x)+aL(x)]S +h.C.}, (1)  gn(x1,-+-,%n) and en(X,---,X,-1) are constructed by im-
posing the boundary condition that, in the incident region,

where a&(x)/ai(x) is the creation operator for a right- Gn(X1,+-, %) is free-bosonic plane wave. That is to say, for

going/left-going photon at positiom, e is the level spliting  *L*"""» X0 < 0,

between the ground stag) and the excited statie) of the 1

two level system[I” is the decay rate into channels other On(X1,"-*, %) = 7th1(le)---hK1(xQn), (5a)
than the 1D continuuny is the frequncy-independent cou- o)

pling strength, an&~ = |g){¢ is the atomic lowering oper- 1

ator. Throughout the paper, we set the group velociand h(¥) = \/_Zel : (5b)

Plank’s constant to 1 for simplicity.
It is natural to transform to modes which are either even
or odd about the original/o(x) = [a,g(X) iaz(—x)]/ V2. The Forn=1, .plane-wave solutions are flgient to satisfy
Hamiltonian [1) is then decomposed into two decoupledEd. (4) with eigenenergl = k:
modes:H = He + Hp with

L q 01(%) = gk(X) = hk(X)[O(=x) + td(X)], (6a)
_ Aoty T a4 .
He = fdxiae(x)dxae(x)+(e ir’/2)lexel o - 2\/|_V(t_k_1)’ (6b)
+ f dxVs(X)[as(x)S™ +h.c], (2a)
o _ koe+il/2-iTe/2 (60)
1., .d KT koe+il/2+4iT¢/2’
Ho = [ dxpal(9 g a0, (2b)

whered(x) is the step function anfl. = V2 = 2V is the spon-
where the #ective coupling strength becomas= V2v. taneous emission rate from the two-level-system to the 1D
Note that the odd mode is free. The number operator fofontinuum. Note thati is the transmission cdiécient for the
even bosons ige = [ dxal(X)ae(X), that for the odd bosons is €VeN problem; because the even mode is chirak: 1 when

No = fdxag(x)ao(x), and the occupation number of the two-
level system isy s = |€)(g]. BecausH commutes with certain
number operatorsH, ne+nys] =[H, ng] = 0, the total number
of excitations in both the even and odd spaces are separat
conserved. We will now focus on finding the non-trivial even-
mode solution and then transform back to the/tight repre-
sentation.

A n-excitation stater(= ne+ nys) is given by

Forn = 2, plane-wave solutions are notfBoient to satisfy
Eqg. [4). As discussed by Shen and Fan [18, 19], a two-photon
tr)(()und state must be included to guarantee the completehess o
GNe basis. Here, instead of extracting the bound state girou
a completeness check [18,/19], we construct the scattering
eigenstate explicitly and find a two-photon bound state con-
tribution to the solution, as has been done in the open inter-
acting resonant-level model [21]. We require the two-photo
solution to satisfy Eg[{53a) in the region, x, < 0 and solve
lm) = fdxl-'-dxngn(xl,m ,Xn)ak(x1) - ad(Xn)I0, g) for the solution in other regions using E. (4). This method
of constructing scattering eigenstates can be generatized
three-, four-, and even more photon cases. In the Appendix,
+de1'~an—1en(X1,~-  Xn-1) 8d(x) - 8l (%n-1)10,€),(3) it is shown that the two-photon eigenstate with eigenenergy



3

E=ki +kyis is generated when there are two photons interacting with the
1 same two-level-system (TLS), while the TLS can only absorb
X1,X2) = Ok (X1, X0) = = k. (X001 ) Gk, (X one photon at one time. The binding strength of the two pho-

Ge(1:32) = Qo (30.32) = 5 [ZQ:g 1 (%) (X0) tons depends on the total spontaneous emissior ra@on-

@ ceptually, two photons have two ways of going through the

+Z kal,kpz (XQl’XQZ)G(XQl)]’ (7a8)  TLS. One way is to pass by the TLS independently as plane

PQ waves and gain a phase factor, which is described by the first

N term ofga(x1, X2). The other way is to bind together and form
el (0% X) = a0~ X 7b a bound state, which is described by the second term. The

[92(07, %) = 92(07, X)], (7b) _ _ .

\ formation of the bound state can be viewed as a result of stim-
@ _ i ulated emission: the first photon excites the TLS and the-pass
kal,kp2 (XQuXQ,) = ~(lie; ~ Dllke, = D, (X2 )he, (XQ2) ing of the second photon stimulates emission of the first pho-

xel 219k xatlg(xg, —xo,).  (7¢) ;c:gtgto the same right-going state, hence producing thedhou

e(x) =

Here,P = (P1,P2) andQ = (Q1, Q2) are permutations of (2)
needed to account for the bosonic symmetry of the wave-

funtion, andI’ = I'c +I” is the total s)pontaneous emission  Forn= 3, a procedure similar to that used to solvernhe2
rate. The two-body bound-state teEB‘[fPlJ(F,2 (Xq1, XQ,)0(Xq,)  caseyields

03(X1, X2, X3) = Oy ok (X1, X2, X3) (8a)

1 2 3
=3 | Z Ok, (X0, ) Gk, (X0, ) Oks (XQg) + Z Oke, (¥Q,) Bf(P)Z’kpg (X0, X03)0(X0,) + Z B(kp)l’kpz’k% (XQu- X0z X3)0(%ay)|.
" Q PQ PQ

es(x.%2) = %{gs(o+,xl, x2) - 93(0 X0, %2)]. (8b)

3 —_— j— —_ —_ _. -_—
B(kp)l,kpz,kp3 (XQ1> XQz: XQs) = 2(tie, — L), — 1) (tke, = LMke, (%) ke, (¥Q3) ko, (XQs)e( H/2-190; Xa1l(x5)0(XQy)s (8C)

whereP = (P, P2, P3) andQ = (Q1, Q2, Q3) are permutations the three photons to pass by the atom: (i) all three photons
of (1,2,3) andé(xq;) = 6(Xq) — (Xg;) for short. In addi- propagate as independent plane waves; (ii) two photons form
tion to the two-photon bound state, there emerges a three two-body bound state, while the other one propagates in-
body bound stater(i) o ko (XQy5 Xy, XQ3)0(Xq,) in the re- dependently as a plane wave; and (iii) all three photons bind
: 12 3 together and form a three-body bound state. These three pro-
gion X1, 2,3 > 0. Conceptually, there are three ways for cesses are described by the first, second, and third terms of

g3(X1, X2, X3), respectively.

N A This simple picture can be applied to a generahoton
TS iii)) - . .
scattering process. For example, in the case of four-photon
e scattering, there are five ways for the four photons to pass
o by the atom as illustrated in Figure 2: (i) all four propagate
as independent plane waves; (ii) two photons form a two-
V. AR body bound state, while the other two propagate indepen-
dently as plane waves; (iii) three photons form a three-body
bound state, while the other one propagate independendly as
plane wave; (iv) four photons form two independent two-body
FIG. 2: (color online) Schematic of flierent processes in four- bound states; and (v) four photons form a four-body bound

photon scattering by a two-level system. The plane wavesspre-  state. These five processes can be identified as the five terms
sented by wiggly lines, while the many-body bound statesepee- ¢ ga(X1, X2, X3, Xa) in the four-photon solution, which is given
sented by the ovals.

by



9a(x0. X2, ¥, X4) = 71 Zgkl(le)gkz(nggks(xQ3>gk4(xQ4)+ngp1(xol)gkpz(xQ2)ka PRCOMTNTESN (9a)
PQ

+ngpl(le>ka Koy ke, (xQz,ng,xQ4>e(xQ2>+ZB | ko, Q1 XQ)BIE) 1 (X3 XQ,)(XQ, )(X0,)

+ Z kpy kP, kpg ke, (XQy> XQz0 XQs:» XQ4)9(XQ1)]v

4
ea(X1, X2, X3) = ——[9a(0", X1, X2, X3) — 94(0~, X1, X2, X3)], (9b)
V2v
4 _ _ _ _
Bf(P)l’kPZ’kPa*kFu (XQl’ Q2> XQs» XQ4) = _Zz(tkpl - 1)(tkP2 - 1)(tkP3 - 1)(tkP4 - 1)hkP1 (XQz)hsz (XQs)hkPg (XQ4)hkP4 (XQ4)
xe 72719 Xl g(x ), — x0,)B(Xq, — X0,)8(XQ, — X0 )- (9c)

The scattering eigenstates of a generghoton problem and similarly for three and four photons. The corresponding
can be constructed recursively in a similar way: the only un-S-matrices are
known term ingn(Xy,-- -, Xn) is then—photon bound state as 1
all the other terms can be constructed from the solutions of st = fdkr--dkn—laﬁé?oee (o). (13)
the 12,---,(n—1)-photon problems. We extrapolate from the n!
results ofn = 2-4 that, for generah (> 2), then-body bound

Notice that the unitarity of the S-matrix is automaticakis-
state assumes the form

fied since the incoming stat@i(ﬂ) Ye is @ complete basis set in

the even space [19, 23].

By,... x1,.... %) = —(=2)" 2] [t - D[ [0(xis1-x) The S-matrix in the odd space is just the identity operator
1ol 0 =-(2) l_[( T )l_[ (e ' because the odd mode is free and decoupled from the impurity

and the even mode,

Xhi (%) i (X2) -+ P4 (Xn-2)liy (X)Wl (1.0)
o | | SO = [ dka-cho 6000 (142)
We have verified this expression foe 5. Thus we have given
explicit formulas for constructing the exag{photon scatter- 0
ing eigenstates_ | >0 = fdxl an nl Z I_l hk4 (XQ|)ae(Xl)|O> (14b)

The exact scattering eigenstates can be used to constuct th
scattering matrix. According to the Lippmann-Schwingeffo  rinally, we wish to construct the scattering matrix in
malism [28], one can readitthe “in” state (before scattering) he righyleft representation based on the S-matrices in the
and the “out” state (after scattering) of a generghoton S-  ¢yenodd representation. For a generaphoton scattering
matrix fromgn(xy,--- , Xn) in the |nput regionX1 <0,---. % < problem, the possible scattering channels are itipdtotons
0) and in the output regior( > 0,---, X, > 0), respectively. ngergo scattering in the even space ardphotons undergo
The “in” and “out” states of one and two photon Scatte”ngscattermg in the odd space, withunning from 0 ton. In ad-
matrices are given by dition, the even and odd spaces are decoupled from each other

Therefore, the-photon S-matrix is

6re= [ axnuxal(00 (11a) !
o st = Z s gsi (15)
o= [ ddnal.  (1b) =
We will use this S-matrix to study the scattering of Fockestat
and and coherent state wave packets in the flgfitspace in the
subsequent sections.

62y e = f dxlde Zhkl(xol)hkz(xQz)]ae(xl)ae(xZ)|0>

) I11. SCATTERING OF FOCK STATES
650 e = f dX1dX2 Ztkltkzhkl(le)hkz(xQz)
In order to show the significance of the many-body bound

+Z Bke. ke (XQl,XQz)]ae(Xl)ae(Xz)IOX (12) states, we study the scattering of a Fock stdfeoba two-
PO e level system. We assume that the incident mode propagates



to the right and the two level system is initially in the graun 1 : , == e
state. We use the S-matrices defined in Eg. (15) to evalual JPrLian W
the transmission and reflection dheients. In practice, any 0.8 el —Pr
state that contains a finite number of photons must have th ___p(Ll)
form of a wave-packet. Thus, we start with the definition of 0.6l ]
the continuous-mode photon wave-packet creation opdrator 5 .
momentum space [24] o 0 b
A R .
2l = [ dkaal (90 (16) o |
with the normalization conditiorf dkla(k)|? = 1. The corre- 0, 03 02 0% 03 1
sponding continuous-modephoton Fock state is v
Tyn . . . —
Iy = (a) 0y, (17) FIG. 3.l(color online) Single-photon transmlssm?g@) and reflec-
vVn! tion (Pf_ )) probabilities as a function of coupling strength The
incident photon is on resonance with the two level systkgn=(¢)
and the output state after it scattefbthe TLS is and we have considered the lossless ¢4se0. (A =0.1.)
lout”) = S™n,). (18)

A. Single-Photon Fock State Scattering

To obtain the scattering probabilities of a Fock state
from the S-matrix found in Sectionll, we follow the fol-
lowing general procedure. (i) First, we write aphoton
input Fock state traveling to the right in momentum

The probabilities of transmissioﬁ’&})) and reflection IP(Ll))
for a single-photon Fock state are found as

1 1
space: n,) = (1/ VAl [dkq - dia a(ke)- - a(kn)lke, -, Kn); pY) = fk>0dk|(k|0lﬂg 2 = fk>0dkfl¥(k)2|tk|2, (20a)
(i) Next, we apply the S-matrix on the input
state and find the output statouty = SMin,) = P = f dkl(kIOUﬁl)>|2=f dk a(K)|rf?, (20D)
(1/ V) [dky -+ dkna(ke) -+ (k) SOk, -, ko) in k0 . ko
the eveyodd basis; (i) We transform back to the Wherety = (t+1)/2 andry = (t — 1)/2 andt is the transmis-
right/left basis. Then we project the output state Sion codficient defined above for the even mode [Eq] (6¢)].

onto the n-photon (rightleft-going) momentum basis  Note that the propagation of a single-photon is strongly
ke, KRy -5 KL, -+ L KOR @ [Kict, -+, KndL, -+ 5 K1, -+, KndL modulated by the TLS as we turn on the coupling. In the

and take the absolute value square to obtain the probabiliti Strong-coupling limit, a single-photon is perfectly retet
P(ky,--- k) of finding the output state ifky,---,kn); (iv) and the two-level atom acts as a mirror. This perfect refiacti
Finally, we integrateP(ky,---,kn) overki,---,k, to obtain is due to destructive interference between the directiystra
the total transmission and reflection probabilites. Heremitted state and the state re-emitted from the TLS. A single-
a rightleft-going state is defined by a positimegative Photon transistor [4] and a quantum switch [6] have been pro-
momentum, i.e.k; > 0,---,ky > 0 for |ky,---,ks)r and  posed based on this perfect reflection.
ki <0,---,kn <O forlky,- -, kn)L.

For convenience, we choose Gaussian type wavepackets

with the spectral amplitude B. Two-Photon Fock State Scattering

14 (k- ko)2 For two incident photons, following the general procedure
a(K) = (2rA%) "V exp( - A2 ). (19)  above, we find that the transmission and reflection probabili
ties are
For all of the numerical examples in this paper, we choose @ dkedk 1 Kk If,z) 2
ko = e: the central frequency of the wavepacket is on reso- RR ~ jk‘>0k -0 1HR2 zK 1kelou")I%, - (21a)
nance with the TLS, a condition which makes the interaction o
between the photons and the TLS strongest. We take the cen- P& = f dkidks [(ky, kolout?)y 2, (21b)
tral momentunkgy > A so that the narrow-band condition is k1>0,kp<0

satisfied. In particular, we chooge= 0.1. However, we em-
phasize that all the conclusions we draw are independent of
the choice ofA. That is because all the transmission and re-
flection probabilities are functions &7 A, wherel’ = 2V2. A WhereP(Rzg, sz and P(LZL) are, respectively, the probability for
different choice ofA does not change any of the qualitative two photons to be transmitted (right-going), one transditt
results, but merely rescales the spontaneous emissioh.rate and one reflected, and two photons reflected (left-going).

1
PR = [ dadie ilalelouf?)f, (210
k1<0,k2<0 .



To show the significance of the bound state in the propage
tion of multi-photon Fock states, we separate each of thie-pro Ne
abilities P(Z) P(Z) andP(Z) into two parts. One part is the con-
tribution from only the plane wave term (labeled PW), which @&ﬁo.s- 12 st
is the direct transmission or reflection. The other is the-con
tribution from all the other terms (labeled BS), includirmgpt . .
bound state term as well as the interference term between tt o= 05 1 % 05 1
plane wave and bound state. Notice that the BS part vanishe
in the absence of bound state, as in the case of single-phot 9 NG
scattering. Therefore, it is a manifestation of the nordine BS

effect caused by the interaction between the TLS and two 0 5, o5 la ol v e o P
a” N - p@

more photons. As an exampl%%R splitinto PW and BS parts o _ B . P®
is Tl

—PW (b) —PW
--BS ---BS

(2)
—Prr

P = f dkadielt(ks. ko) + Blkiko)?  (22a) v v
k1>0k2>0

(22b) FIG. 4: (color online) Two-photon transmission and refleeiproba-
bilities as a function of coupling strength (a) Probability that both
photons are transmitted (and hence are right-gdﬁﬁ). (b) Prob-
ability that one photon is transmitted and one reflectech{rieft,

P(RZB). (c) Probability that both photons are reflected (bothdgfing,

PI(_ZL)). (d) The three processes on a single plot. The label PWsrefer
to the contribution from the plane-wave term only, while Bfers

to all the other contributions involving bound-state termike inci-
dent photons are on resonance with the two-level syskgm €), we
consider the lossless cake= 0, andA = 0.1. Notice the largeféect

of the bound state on these quantities.

(P@)pw + (PQ)es,

f dkadkolt(Ka, ko)1,
k1>0,k2>0

f dkadiolt ki, ko) Bk k) (22d)
k1>0 k2>0
+1(Kyg, k2) B (K1, k2) + |B(K1, k2)?]

a(k)a(ko)t, t,
—i/2r

[k1—€+i2

X f dk (K (ks + k- k,)rk’ Mg +ho—K -
k>0

G (22¢)

(PQ)es

t(ka, k2) (22e)

—i/2n
' ]

B(kz, k2) LT
2

(22f)

ducing nonlinear (bound statefects lies at intermediate cou-
pling, when the spontaneous emission fate on the order of
the wavepacket width (Vi ~ 0.4 whenA = 0.1).

Figurd4 shows the three transmission probabiliﬁ%

Pge, andP(Z) for our standard parameters, with the contribu-

tions from the plane wave and bound state plotted separately

C. Three-Photon Fock State Scattering

in panels (a)-(c)Note that the presence of the bound state has
a very substantial effect on these transmission probabilities.

Following the general procedure for obtaining scattering
probabilities, the transmission and reflection probabsifor

As shown in panels (a) and (P& and P& are enhanced  three-photon Fock state scattering are defined as
by the formation of the bound state. ThIS is mainly due to
constructive interference between the plane wave and bound
state. In contrast, panel (c) shows tﬁgﬁ is strongly reduced PS’F){R =
in the presence of the bound state because of destructive in-
terference between the plane wave and bound state (changep(3)
from ~ 0.8 to~ 0.4 atV = 0.5). Therefore, the presence ofthe ~ RR
bound state tends facrease the one-photon and two-photon @ 3.2
transmission, whilsuppressing the two-photon reflection. PriL = f dkadkadks §I<k1,k2,|<3loufy e
A particularly interesting aspect of the results in Hig4 is ki >0kp<Oks<0 '
that the &ect of the bound state is most prominent in the p®)
intermediate coupling regime, not at the strongest coupling.
This is because, first, in the weak coupling limit, the inter-
action is too weak to produce a pronounced bound state for
two-photon scattering, while, second, in the strong cawpli whereP®_ P& pd

1
| dkydkodka —,|<k1,kz,|<3|ou€)>|2,
k1>0 k2>0 k3>0

f dkuckodks 5 |<k1, ke, kelouf)2,
k1>0 k2>0 k3<0

1
f dkaclodks Kk, ko, kslouf?)P,
k1<0 k2<0 k3<0 :
(23)

rrre Prru PRl @nd Pf_sel_ are the probabilities for
limit, the TLS responds to the first photon too quickly (in a three photons being transmitted (all right-going), twanga
duration of order 1I' with I = 2V?) for the second photon mitted and one reflected, one transmitted and two reflected,
to produce a significant nonlineaffect. (The formation of and all three reflected (left-going), respectively. As ia tivo-

the bound state requires the presence of both photons at tiphoton scattering case, we separate each probabilityvrdo t
two-level system.) The optimal coupling strenith for pro-  parts: the contribution of only the plane wave term (labeled
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FIG. 5: (color online) Three-photon transmission and réifacprobabilities as a function of coupling strength V. Rapbability of all three
photons transmittedfF)eR). (b) Probability of two photons transmitted and one reﬁdo{Pg%L). (c) Probability of one photon transmitted and
two photons reflecte SBL). (d) Probability of all three photons reflectdéﬁ)l_). (e) P all together. The label PW refers to the contribution

from only the plane wave term, while BS refers to all the otbentributions, involving bound state terms. The incidehttpns are on
resonance with the two level systeky & €), we consider the lossless cd3e= 0, andA = 0.1. Note the large bound statéects.

PW) and the contribution from all the other terms (labeledwith al = fdka(k)a*(k)|0), and mean photon number="

BS), including the bound states as well as the interfereaee b fdkla(k)lz. A Gaussian type wavepacket is chosen

tween the plane wave and bound states. The probabilities arid

the decomposition into PW and BS parts are plotted in Fig- A = Vn (k—ko)?

ure for our usual parameters. a(k) = (2rr2)1/A € p(— T)
Figurd® shows that the bound state contribution to the ) ]

transmission probabilities is, as for two photons, venyssai- ~ fOr numerical evaluations, we use, as befare; 0.1 andko =

tial. In panels (a) and (b), the BS partsl?ff%R and P%_ are ¢~ A. The output statguty) is then

positive; thus, these probabilities are enhanced by thedou

states. Panel (d) shows tH%{fSL)L is suppressed by the bound

state contribution for arbitrary coupling strength. In trast, o o .

as we increase the coupling streng?éfgl_ is first suppressed \We assume the incident coherent state is right-going and the

and then enhanced by the BS part as shown in Figure 5(ciWo-level system is in the ground state initially. We presen

Tuning the coupling strength changes the relative phase bél€ analysis of second-order correlation and photon number

tween the plane wave and bound state partsPﬁgrL, the jn-  Statistics in the transmitted field.

terference between them happens to change from destructive

to constructive as the coupling strength increases. Firedl

in the two-photon case, the most pronounced bound state ef-

fects occur in the intermediate coupling regime insteadhef t ) ) )
strong coupling limit. The second-order correlation function of the transmitted

oy . o
To sum up this section, we point out that all the curvesfleld is defined as [24]

; (25)

jout,) = > $Mjay) (26)
n

A. Corréation

plotted in Figd. B-b are universal in terms of the choicé\of (out,lal(x1)al(x2)ar(X2)ar(x1)lout,)
BecauseA appears in the scattering probabilitig®yf, etc.] g%~ x1) = i aTR . - (27)
only in the ratiol'/A, a diferent choice of (i.e., other than (outylag(xa)ar(x1)louty)

0.1 used in the figures) is equivalent to rescalihgnd does We consider the mean photon numises T.0. In this case,

ial bound b dh ntrinsic f It e probability to findn > 3 number states is much smaller
tial bound state féects observed here are intrinsic for multi- than that oin = 2 number states. Moreover, the contributions

phot_on scattering processes in this system, independéma of from n > 3 states tay® are at least one order af (= 0.1)
details of the wavepackets. smaller than that from the = 2 state. Therefore, we neglect

the contributions fromrm > 3 number states. The second-order
correlation function simplifies to

T(Xo—X1)
IV. SCATTERING OF COHERENT-STATES | [ dkedko ar(ke)er(Ka) (tiq thy — T T € ' )|2

k0 ) = dka ko (ke )er(Ka) iy ti |
We now turn to studying the scattering of coherent states |f 1dkz a(ky)a(kz)ty k2| (28)

in order to show, first, the strong photon-photon correla-
tion induced by the the two-level system and, second, th
change in photon number statistics. The incident cohere
state wavepacket is defined byl[24]

The contributions from the directly transmitted state and
fhe bound state can be identified as the first term and sec-
Wnd term in the numerator cgg)(xz— x1) in Eq.(28). In

the absence of the bound staﬁ)(xz —X1) is always equal

. to unity. As we turn on the interaction, the interference be-
la) = €20y, (24)  tween the directly transmitted state and the bound stale wil
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F(xz—xl) FIG. 7: (color online) Photon number distribution of thensenitted
field compared with a coherent state. We considered theeksssl
casel” = 0. The statistics is non-Possonian with the 2 and 3 photon

FIG. 6: (color online) Second-order correlation of the smitted  content enhanced.

field given an incident coherent state with< 1 at various cou-

pling strengths/ to the 1D continuum. (a¥ = 0.16, (b)V = 0.26,

(c) V=034, (dV =038, (e)V =040, (f)V=045. The sponta- enhance the transmission. Therefore, we will observe agtro

neous emission rate to channels other than the 1D continsw®ti  jnjtial bunching followed by a later antibunching, simitar
toT” = 0.10. Notice that the correlation behavior is very sensitive t Figure6(f).

the coupling strength to 1D continuum, showing both bunglzsind
antibunching.

B. Photon Number Distribution

give rise to interesting correlation behavior. Fidure 6vefo
the second-order correlation as a functiomé, — x;) at var-
ious coupling strengthd/, to the 1D mode witi” = 0.1. In
the weak coupling limit ¥ = 0.16) as shown in Figuféd 6(a),
the directly transmitted state dominates @Efd(O) is slightly
smaller than 1. We observe a slight initial antibunching VAs
increases [Figufd 6(b)—(c)hf§)(0) further decreases and the P1
initial antibunching gets stronger and becomes strongest a
V=034 Whengg)(O) =0. Notice that the antibunching is get- p,
ting weaker as one moves away from the originWox 0.34.
Further increase of starts to change the initial antibunching : 1 P

[V = 0.38,92(0) < 1] to bunching ¥ = 0.45, g®(0) > 1] as Ps = fkl’kz’kpodkldkzdk%!KO“T“'(”‘L ke-kadr@ LI
shown in Figur€l(d)-(f). In this case, the bound state start (29)

to dominate the correlation behavior. It is remarkable,that

for V > 0.34, the initial antibunching\( < 0.40) or bunch-  where|l), is the complete basis set in the left-going photon
ing (V > 0.40) is followed by a later antibunchirﬁ)(O) =0, space. We consider a mean photon nuntberl.0 in the in-
which is caused by the cancellation of the directly trantadit cident coherent state. In this case, the probability to fired t
state and the bound state. The formation of the bound stafeur photon state is negligible:(1.6%). We compare the pho-
gives rise to a rich phenomenon of photon-photon correiatio ton number distributior?,, of the output state withRn)poisson
which is very sensitive to the coupling strengthto the 1D  of a coherent state having the same mean photon number.

Given the output stateut, ), we measure the photon num-
ber distribution in the transmitted field following the geale
procedure described in Sec. lIl.

[(OULI(I0)R® 1)),
fk 0olk|<oura|(|k>re®|l>L)|2,

1
f dkoclo - I(outy (ks ko)r@ L)
k]_,k2>0 .

mode. Effective attractive or repulsive interaction between FigurdT shows the ratio betweePRjpoissonand P, as a
photons is induced by the presence of a single two-level sys-  function of the coupling strengi and the mean photon num-
tem [18]. bern of the incident coherent state. The zero-photon proba-

Our findings agree with the results obtained by Chetraj. bility does not deviate from that of a coherent state much in
[4] using a very diferent approach. In the lossld3s= 0 case, the whole parameter region we considered. The one-photon
as we increase the coupling strength, the transmissiondéri  probability is smaller than the corresponding probabilitya
vidual photons is reduced rapidly [see, for example, FiBure coherent state. In contrast, the two- and three-photongprob
and Figuré¥(a)]. But the two-photon bound state can styonglbilities are much larger than the ones in a coherent state; es



cially in the strong coupling regime. This is to say, theinte two-photon case read
action between photons and the two-level system redisérbu

the probabilities among fierent photon numbersThe one- 1 5140,)—E
photon probability is reduced and is redistributed to the two- [i_( 1+082) = 2| 02(x1. %) +
and three-photon probabilities. This is mainly because the v
bound states enhance the transmission of multi-photoesstat 5[5(X1)62(X2) +6(x)ex1)| =0, (Ala)
as we have shown in Sec. lll B and C. In conclusion, we ob-
tain a non-Poissonian light source after the scatterings It 1id i Y] _
perhaps possible to use this strongly-correlated lightcsoto [ i dx Eo+e-il /2]62()() +2V62(0,%) =0, (ALD)
perform passive decoy-state quantum key distributiondeor
to raise the key generation rate [25-28]. which can be cast into the following set of equations
1
[ (01+02) - E2]g2(x1. %) = O, (A2a)
V. CONCLUSION €2 = 2102(0". 0~ (07, Y. (A2b)
In this paper, we present a general method to construct the [} d_ Es+e— iF’/Z]ez(x)

exact scattering eigenstates for the problem-photons in- i dx _
teracting with a two-level system. Many-body bound states +V[@2(0%, ) +g2(0",x)] =0,  (A2c)
appear in the presence of the coupling between photons and . 5
the two-level system. Furthermore, the scattering matace &(07) = &(07). (A2d)

extracted using the Lippmann-Schwinger formalism. We em- o _

phasize that the completeness of the S-matrices is guarhnteHere, gz(x1, xo) is discontinuous at; = 0,x; = 0 and we set
by imposing open boundary conditions and requiring the inci 92(%.0) = [92(x.0%) + g2(x.07)] /2. We eliminatee(x) from
dent field to be free plane waves. Based on the S-matrices, wiBe above equations and obtain

study the scattering of the Fock states and coherent sttes.

bound states are shown to enhance the transmission of multi- [}(61 +8) - E2]g2(xl, %) = 0, (A3a)
photon states and suppress the transmission of singlephot [

states. In the transmitted field of coherent state scattetfire 1d

photons exhibit strong bunching or antibunchirfteets de- [.—— —-Ex+e-il"/2- iI“C/Z]gz(O+,x)

pending on the coupling strength. This is a manifestation of i dx 14d

the many-body bound states. Finally, we determine the pho- = [.__ —Ex+e-il"/2+ iFC/Z]gz(O_,X), (A3Db)
ton number distribution and find that the one-photon state is i dx

transferred to two- and three-photon states. This resulés i 92(07,0%) — go(07,0%) = g2(0~,0%) — g2(0~,07). (A3c)

non-Poissonian light source which might have applications

quantum information. Because of the bosonic symmetry, we can solvegx, X2)

by first considering the half spacg < x and then extend-
ing the result to the full sapce. In this case, there are three
quadrants in real space€d x1 < X <0; @ x1 <0< x2; @

0 < x1 < x2. Eq.[A3D) can be rewritten as two separate equa-
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Appendix: Two-photon Scattering Eigenstate o )
Substltutmggg@(xl,O‘) [Eqg. (3)] into Eq.[AZ&), we solve to
find

In this appendix, we show in detail how we obtain the two-
photon scattering eigenstate [Ed. (7)] by imposing the open 1, @kax _ dkex it o
boundary condition EQI5). The equations of motion for the 95 (%07)= z[tkzgﬁkl o | +AeTZHtkreAlx - (AB)
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whereA is a constant to be determined. Applying the con-whereB is a constant to be determined. Again, applying the

straint Eq.[(A3R) t(gé@(x, 0%*), we obtain constraint Eq[(A3a) tg(Z@(O‘f, X), we obtain
1,— dkixa+kox) _ dikoxi+kixp) i i
@ - — 1 _ _ dlkixatkoxy)  dkixp+kox)
gy (X1, X%2) > [tk2 o + 1y, o gg@(xl’ X2) = Etkltkz - n -

+Ael72Hetex)dlarkora — (ag) +BelT/2-i0e- ) dlatkde (AQ)

From Eq.[[(A8), we can identifiA to be zero: otherwise, the _ o
solution is not normalizable[*2—*)/2 is divergentwhem,—  Finally, B is found by substituting EJ.5), EQ. (A7), and

X1 — oo]. Hence ga(x1, %) in region® is given by Eq. (A9) into the continuity condition Eq.(ABc), yielding
1. dkixatkoxy) _ dlkexi+kix) (t, — 1) (e, — 1)
@ - kL ka
g, (X1, %) = z[tkz > e — - (A7) B= B e— (A10)

Substituting EqL{AY) into Edl.(A2b) yields Extending these solutions from the half space to the fultspa
ghkox  dlkax using the bosonic symmetry gives rise to the two-photon scat

1_ _ /o4 _ . . . . .
g>(0",x) = ztkltKZ[E + 7] Bl T/2+ita+ke=<)lx (AB)  tering eigenstate given in EG](7) of the main text.
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