102 research outputs found

    MeerKAT HI line observations of the nearby interacting galaxy pair NGC 1512/1510

    Full text link
    We present MeerKAT HI line observations of the nearby interacting galaxy pair NGC 1512/1510. The MeerKAT data yield high-fidelity image sets characterised by an excellent combination of high angular resolution (~20") and and sensitivity (~0.08 Msun/pc^2), thereby offering the most detailed view of this well-studied system's neutral atomic hydrogen content, especially the HI co-located with the optical components of the galaxies. The stellar bulge and bar of NGC 1512 are located within a central HI depression where surface densities fall below 1 Msun/pc^2, while the galaxy's starburst ring coincides with a well-defined HI annulus delimited by a surface density of 3 Msun/pc^2. In stark contrast, the star-bursting companion, NGC 1510, has its young stellar population precisely matched to the highest HI over-densities we measure (~12.5 Msun/pc^2). The improved quality of the MeerKAT data warrants the first detailed measurements of the lengths and masses of the system's tidally-induced HI arms. We measure the longest of the two prominent HI arms to extend over ~27 kpc and to contain more than 30% of the system's total HI mass. We quantitatively explore the spatial correlation between HI and far-ultraviolet flux over a large range of HI mass surface densities spanning the outer disk. The results indicate the system's HI content to play an important role in setting the pre-conditions required for wide-spread, high-mass star formation. This work serves as a demonstration of the remarkable efficiency and accuracy with which MeerKAT can image nearby systems in HI line emission.Comment: 12 pages, 11 figures. Submitted only to arXi

    Enhanced near-infrared response of nano- and microstructured silicon/organic hybrid photodetectors

    Get PDF
    Heterojunctions between an organic semiconductor and silicon are an attractive route to extending the response of silicon photodiodes into the near infrared (NIR) range, up to 2000 nm. Silicon-based alternatives are of interest to replace expensive low band-gap materials, like InGaAs, in telecommunications and imaging applications. Herein, we report on the significant enhancement in NIR photodetector performance afforded by nano- and microstructuring of p-doped silicon (p-Si) prior to deposition of a layer of the organic semiconductor Tyrian Purple (TyP). We show how different silicon structuring techniques, namely, electrochemically grown porous Si, metal-assisted chemical etching, and finally micropyramids produced by anisotropic chemical etching (Si μP), are effective in increasing the NIR responsivity of p-Si/TyP heterojunction diodes. In all cases, the structured interfaces were found to give photodiodes with superior characteristics as compared with planar interface devices, providing up to 100-fold improvement in short-circuit photocurrent, corresponding with responsivity values of 1–5  mA/W in the range of 1.3–1.6 μm. Our measurements show this increased performance is neither correlated to optical effects, i.e., light trapping, nor simply to geometric surface area increase by micro- and nanostructuring. We conclude that the performance enhancement afforded by the structured p-Si/organic diodes is caused by a yet unresolved mechanism, possibly related to electric field enhancement near the sharp tips of the structured substrate. The observed responsivity of these devices places them closer to parity with other, well-established, Si-based NIR detection technologies

    The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future.

    Get PDF
    There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here

    Towards illiberal conditioning? New politics of media regulations in Poland (2015–2018)

    Get PDF
    In this article, we examine how media policy changes aid de-democratisation in Poland. Unfolding the logic underpinning the new politics of media regulations, this article argues that media policy paints a nuanced picture of democratic backsliding. Our Foucault-inspired discourse analysis of media policy archive focuses on the rise of illiberal trends at the cross-roads of the Polish hybrid media system, democracy and society. We find these trends display the features of centralisation of power, cultural politics, political partisanship and social polarisations. We explain these notions, using the concepts of “executive aggrandisement” and “politicisation” of public service media sector

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy

    Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Citrus canker disease caused by the bacterial pathogen <it>Xanthomonas citri </it>subsp. <it>citri (</it>Xcc) <it>has </it>become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative <it>Fortunella margarita </it>Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in <it>Fortunella </it>and citrus at the molecular level.</p> <p>Results</p> <p><b>cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray</b>. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus.</p> <p>Conclusion</p> <p>Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.</p

    Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition

    Full text link
    corecore