197 research outputs found

    The brain: What is critical about it?

    Get PDF
    We review the recent proposal that the most fascinating brain properties are related to the fact that it always stays close to a second order phase transition. In such conditions, the collective of neuronal groups can reliably generate robust and flexible behavior, because it is known that at the critical point there is the largest abundance of metastable states to choose from. Here we review the motivation, arguments and recent results, as well as further implications of this view of the functioning brain.Comment: Proceedings of BIOCOMP2007 - Collective Dynamics: Topics on Competition and Cooperation in the Biosciences. Vietri sul Mare, Italy (2007

    On visual distances for spectrum-type functional data

    Full text link
    A functional distance (H), based on the Hausdorff metric between the function hypographs, is proposed for the space Ɛ of non-negative real upper semicontinuous functions on a compact interval. The main goal of the paper is to show that the space (Ɛ,H) is particularly suitable in some statistical problems with functional data which involve functions with very wiggly graphs and narrow, sharp peaks. A typical example is given by spectrograms, either obtained by magnetic resonance or by mass spectrometry. On the theoretical side, we show that (Ɛ,H) is a complete, separable locally compact space and that the H-convergence of a sequence of functions implies the convergence of the respective maximum values of these functions. The probabilistic and statistical implications of these results are discussed, in particular regarding the consistency of k-NN classifiers for supervised classification problems with functional data in H. On the practical side, we provide the results of a small simulation study and check also the performance of our method in two real data problems of supervised classification involving mass spectraA. Cuevas and R. Fraiman have been partially supported by Spanish Grant MTM2013-44045-

    Testing statistical hypothesis on random trees and applications to the protein classification problem

    Full text link
    Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov--Smirnov-type goodness-of-fit test proposed by Balding et al. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford--Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton--Watson related processes.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS218 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiθe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation ttt\rightarrow-t and ψψ\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric

    Strong Collapse Turbulence in Quintic Nonlinear Schr\"odinger Equation

    Full text link
    We consider the quintic one dimensional nonlinear Schr\"odinger equation with forcing and both linear and nonlinear dissipation. Quintic nonlinearity results in multiple collapse events randomly distributed in space and time forming forced turbulence. Without dissipation each of these collapses produces finite time singularity but dissipative terms prevents actual formation of singularity. In statistical steady state of the developed turbulence the spatial correlation function has a universal form with the correlation length determined by the modulational instability scale. The amplitude fluctuations at that scale are nearly-Gaussian while the large amplitude tail of probability density function (PDF) is strongly non-Gaussian with power-like behavior. The small amplitude nearly-Gaussian fluctuations seed formation of large collapse events. The universal spatio-temporal form of these events together with the PDF for their maximum amplitudes define the power-like tail of PDF for large amplitude fluctuations, i.e., the intermittency of strong turbulence.Comment: 14 pages, 17 figure

    Editorial for the Special Issue on Functional Data Analysis and Related Topics

    Get PDF
    This Special Issue of the Journal of Multivariate Analysis (JMVA), which comprises a survey and 19 research papers, takes its roots in the Fourth International Workshop on Functional and Operatorial Statistics held in A Coruña, Spain, June 15–17, 2017, and dedicated to the memory of Peter Hall. However, this issue extends far beyond the scope of IWFOS-2017 and includes contributions from several of the world’s leading research groups in functional data analysis (FDA). All papers were peer-reviewed according to the journal’s high academic standards

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure
    corecore