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Abstract. We review the recent proposal that the most fascinating brain properties are related to the 
fact that it always stays close to a second order phase transition. In such conditions, the collective 
of neuronal groups can reliably generate robust and flexible behavior, because it is known that at 
the critical point there is the largest abundance of metastable states to choose from. Here we review 
the motivation, arguments and recent results, as well as further implications of this view of the 
functioning brain. 

Keywords: Brain, critical phenomena, complex networks. 
PACS: 87.19.L-,89.75.-k,87.85.Xd 

1. INTRODUCTION 

The brain is a complex adaptive nonhnear system that can be studied along with other 
problems in nonlinear physics from a dynamical standpoint. With this perspective here 
we discuss a proposal [5, 15, 16, 17, 18, 19] claiming that the brain is spontaneously 
posed at the border of a second order phase transition. The claim is that the most 
fascinating properties of the brain are -simply- generic properties found at this dynamical 
state, suggesting a different angle to study how the brain works. From this viewpoint, 
all human behaviors, including thoughts, undirected or goal oriented actions, or simply 
any state of mind, are the outcome of a dynamical system -the brain- at or near a critical 
state. 

The starting point for this conjecture is that it is only at the critical point that the largest 
behavioral repertoire can be attained with the smallest number of degrees of freedom. 
Behavioral repertoire refers to the set of actions useful for the survival of the brain and 
degrees of freedom are the number of (loosely defined) specialized brain areas engaged 
in generating such actions. A number of ideas from statistical physics can be used to 
understand how the brain works by looking at the problem from this angle. 

This article is dedicated to discussing the basis and specifics of this proposition along 
with its imphcations. The paper is organized as follows: The second section begins 
by reviewing the problem. Basic features of the physics of critical phenomena are 
introduced and used to support the Darwinian notion that brains are needed to survive 
in a critical world. The third section addresses predictable observations, and the fourth 
section reviews recent results that support the idea of a critical state in brain function. 
The paper closes with a short discussion of its implications. 
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2. WHAT IS THE PROBLEM? 

New fascinating discoveries about brain physiology are reported every week, each one 
uncovering a relatively isolated aspect of brain dynamics. Yet the reverse process -
how these isolated pieces can be integrated to explain how the brain works- is rarely 
discussed. Large-scale knowledge of the nervous system is generally only casted in 
psychological terms, with httle discussion of underlying mechanisms. The goal should 
be, as it is in physics, to explain all macroscopic phenomena -regardless of their nature-
on the basis of their underlying microscopic dynamics. 

The problem discussed here concems which underlying properties allow the brain 
to work as a collective of neuronal groups. How chief brain abilities work in concert, 
how perception and action are engaged, and how the conscious mind emerges out of 
electrical impulses and neurochemistry is what we wish to understand, to name a few. 
This is essentially equivalent, for instance, to understanding how culture (or any other 
community emergent property) emerges from each individual's intellectual capital. It is 
clear that the solution of these questions, as for other complex systems, requires more 
than the mere enumeration of all the knowledge about the individual components. 

The task of understanding how a collective works together is challenging, but even 
more is in the case of the brain. As a whole the brain has some notoriously conflictive 
demands. In some cases it needs to stay "integrated" and in others must be able to work 
"segregated", as discussed extensively by Tononi and colleagues [48,49].^ This is a non 
trivial constraint, nevertheless mastered by the brain as it is illustrated with plenty of 
neurobiological phenomenology. Any conscious experience always comprises a single 
undecomposable scene [48], i.e., an integrated state. This integration is such that once 
a cognitive event is committed, there is a refractory period in which nothing else can 
be thought of. At the same time segregation properties allow for a large number of 
conscious states to be accessed over a short time interval. As an analogy, the integration 
property we are referring to could be understood as the capacity to act (and react) on 
an all-or-nothing basis, similar to an action potential or a travelhng wave in a excitable 
system. The segregation property could be then visuahzed as the capacity to evoke equal 
or different all-or-nothing events using different elements of the system. In fact, this 
metaphor may be more than apphcable. 

It will be discussed below that the segregation-integration conflict shares many simi
larities with the dynamics seen in nonlinear systems near a order disorder phase transi
tion. 

2.1. What is special about being critical 

Work in the last two decades has shown that complexity in nature often originates 
from the tendency of non-equihbrium extended nonhnear systems to drift towards a 
critical point. There are many examples in which this connection was made more 

^ Perhaps the same conflict can be identified also in other complex systems. 
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or less rigorously including problems in physics, economy, biology, macroeconomics, 
cosmology and so on [32, 41, 50, 5, 10]. It had been argued already [5, 15, 16, 18, 19] 
that the same approach should be used to understand large scale brain dynamics. 

To review such a proposal we will briefly discuss which features of the critical state 
are pertinent to the conjecture that the brain is critical. As an example we will use the 
weU known Ising model of the magnetization in ferromagnetic materials, but it should 
be noted that the important point are the universal features of the phase transition and 
not the model itself. 

We can describe the Ising model by considering a relatively smaU square lattice 
containing Â  = LxL sites, with each i site associated with a variable Si, where Si = +1 
represents an "up" spin and Si = —I a "down" spin. Then any particular configuration 
of the lattice is specified by the set of variables SI,S2,---,SN. The energy in absence of 
external magnetic field is given by 

N 

£ = - / X '^'J (1) 
ij=nn{i) 

where / is the coupling constant and the sum of j rans over the nearest neighbors of a 
given site / (nn{i)). The simulation is usually implemented with the Metropolis Monte 
Carlo algorithm [30, 46] solving for a given heat bath temperature T. 

CoUectively, spins wiU show different degrees of order and magnetization values de
pending on the temperature, as seen in the ferromagnetic-paramagnetic phase transition 
iUustrated in Figure 1. A material is ferromagnetic if it displays a spontaneous magne
tization in absence of any external magnetic field. If we increase the temperature the 
magnetization gets smaller and finaUy reaches zero. At low temperature the system is 
very ordered with only very large domains of equaUy oriented spins, a state almost 
invariant in time. At very high temperatures, spin orientation changes constantly and be
come correlated only at very short distances resulting in vanishing magnetization. Only 
in between these two homogeneous states, at the critical temperature, does the system 
exhibit pecuhar fluctuations both in time and space. The temporal fluctuations of the 
magnetization is scale invariant. Similarly, the spatial distribution of spins clusters show 
long range (power law) correlations and scale invariance reflected in a fractal stracture 
of clusters of ahgned spins. It is important to reahze two points: 1) these large stractures 
only emerge at the critical point, and 2) they extend up to the system size despite the fact 
that the interactions between the systems elements are only short-range (i.e., between 
the nearest neighbors). Thus, at the critical temperature, the system is able to maintain 
correlation between far away sites (up to the size of the system) staying long periods of 
time in a given meta-stable state but also exploring a large diversity of such states. This 
behavior is reflected in the maximization of the fluctuations of magnetization, a typical 
signature of a second order phase transition. 

We propose that this dynamical scenario -generic for any second order phase 
transition- is strikingly similar to the integrated-segregated dilemma discussed above, 
and is necessary for the brain to operate as a conscious device. It is important to note 
that there are no other conceivable dynamical scenarios or robust attractors known 
to exhibit these two properties simultaneously. Of course, any system could trivially 
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FIGURE 1. Ferromagnetic-paramagnetic phase transition. Bottom: Temperature dependence of mag
netization m(T) for Fe. Top three panels are snapshots of the spins configuration at one moment in time 
for three temperatures: subcritical, critical, and supercritical. 

achieve integration and long range correlations in space by increasing links' strength 
among faraway sites, but these strong bonds prevent any segregated state. 

2.2. Why do we need a brain? 

This question may sound frivolous but it is not at all, because in Darwinian terms it 
is necessary to consider the brain embedded in the rest of nature, and co-evolving ac
cording with the constraints of natural selection. Although some views could advocate 
for computational properties in specific neural circuits and find mathematical justifica
tion for it existence, we simply think that the brains we see today are the ones that -for 
whatever means- got an edge and survived. How consistent is our view of the brain near 
a critical point will be answered by considering these Darwinian constraints. We pro
pose that the brains we see today are critical because the world in which they have to 
survive is up to some degree critical as well. Let us look at the other possibilities. If the 
world were sub-critical then everything around will be simple and uniform (as in the 
left top panel of Figure 1); there would be nothing to learn, a brain will be superfluous. 
In a supercritical world, everything would be changing all the time (as in the right top 
panel of Figure 1); in these conditions it would be impossible to learn. Thus in neither 
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extreme could a brain have provided an edge to survive- in the very uniform world there 
is nothing to learn and in the wildly fluctuating one there is no use for learning. The 
brain, therefore, must only be necessary to navigation in a complex, critical world.^ In 
a critical world, things are most often the same, but there is always room for surprises. 
To us, this is -intuitively speaking- how the dynamics with power law correlations look 
like, there is always a very unhkely event that always surprises us, i.e., some novelty 
on a background of well known usual things. We "need" a brain because the world is 
critical [5, 6, 7, 15,32]. 

Furthermore, a brain not only needs to learn and remember, but also has to be able 
to forget and adapt. If the brain were sub-critical then aU brain states would be strongly 
correlated with the consequence that brain memories would be frozen. On the other 
extreme, a supercritical brain would have patterns changing all the time, resulting in the 
inability to hold any long term memory. One must conclude therefore that in order to be 
highly susceptible the brain itself has to be near the critical state. 

Of course these ideas are not entirely new, indeed almost the same intuition prompted 
Turing half a century ago to speculate about learning machines using similar terms [51]. 

3. WHAT SHOULD BE SEEN? 

In previous writings we have advanced a tentative hst of features of the critical point that 
should be observed in brain experiments. These included: 

1. At large scale: 
Cortical long range correlations in space and time. Large scale anti-correlated 
cortical states. 

2. At small scale: 
"Neuronal avalanches", as the normal homeostatic state for most neocortical cir
cuits. "Cortical-quakes" continuously shaping the large scale synaptic landscape 
providing "stability" to the cortex. 

3. At behavioral level: 
All adaptive behavior should be "bursty" and apparently unstable, always at the 
"edge of failing". Life-long learning should be critical due to the effect of continu
ously "rising the bar". 

In addition one should be able to demonstrate that a brain behaving in a critical world 
performs optimally at some critical point, thus confirming the intuition that the problem 
can be better understood by considering the environment from which brains evolved. 

In the list above, the first item concems the most elemental facts about critical 
phenomena: despite the well known short range connectivity of the cortical columns, 
long range structures appear and disappear continuously. The presence of inhibition as 
weU as excitation together with elementary stability constraints determine that corti
cal dynamics should exhibit large scale anti-correlated structures as well [22]. The fea
tures at smaller scales could have been anticipated from theoretical considerations, but 

It has been already argued elsewhere [5, 32] that the world at large is critical. 
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avalanches were first observed empiricaUy in cortical cultures and shces by Plenz and 
colleagues [11]. An important point that is left to understand is how these quakes of 
activity shape the neuronal synaptic profile during development. At the next level this 
proposal suggests that human (and animal [13, 37]) behavior itself should show evi
dence of criticality and learning also should be included. For example, in teaching any 
skiU one chooses increasing challenging levels that are easy enough to engage the pupils 
but difficult enough not to bore them. This "raising the bar" effect continues through fife, 
pushing the learner continuously to the edge of failure! It would be interesting to mea
sure some order parameter for sport performance to see if shows some of these features 
for the most efficient teaching strategies. 

4. RECENT RESULTS 

4.1. Neuronal avalanches in cortical networks 

The first demonstration that neuronal populations can exhibit critical dynamics were 
the experiments reported by Plenz' lab [11]. What they uncovered was a novel type of 
electrical activity for the brain cortex. This type of population activity, which they termed 
"neuronal avalanches", sits half way in between two weU known pattems: the oscillatory 
or wave-like highly coherent activity on one side and the asynchronic and incoherent 
spiking on the other. In each neuronal avalanche it is typical of a large probabihty to 
engage only few neurons and a very low probabihty to spread and activate the whole 
cortical tissue. In very elegant experiments Plenz and coUeagues estimated a number of 
properties indicative of critical behavior including a power law with an exponent '-^ 3/2 
for the density of avalanche sizes (see Figure 2). This agrees exactly with the theoretical 
expectation for a critical branching process [57]. Further experiments in other settings, 
including monkey and rat in vivo recordings, have already confirmed and expanded upon 
these initial estimations [12, 34, 45, 33]. 

An unsolved problem here is to elucidate the precise neuronal mechanisms leading 
to this behavior. Avalanches of activity such as the one observed by Plenz could be the 
reflection of completely different scenarios. It could be that the power law distribution of 
avalanches sizes reflect several non- homogeneous Poisson processes that when added 
together look like a scale free process. This is unhkely, and scaling analysis should show 
that this is not the case. It could also reflect a structural (i.e., anatomical) substrate over 
which traveUing waves in the peculiar form of avalanches occur. This would imply that 
the long range correlations detected are triviaUy due to long range connections. If that 
is the case, as was discussed above, this would have nothing to do with criticality, and 
furthermore would imply that segregation is impossible. Based of what is known about 
the connectivity, it is reasonable to think of a dynamical mechanism responsible for this 
type of activity. One can assume that the neuronal avalanches occur over a population 
of locaUy connected neurons. Their ongoing collective history wiU permanently keep 
them near the border of avalanching and each coUective event wiU only excite enough 
neurons to dissipate the excess of activity. This is the most hkely scenario, following the 
ideas put forward by Bak and colleagues [5, 6, 7, 32]; however, there is no theoretical 
formalization of these results as of yet. 
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size (#electrodes) 

FIGURE 2. Scaling in neuronal avalanches of mature cortical cultured networks. The distribution of 
sizes follows a power law with an exponent ^ 3 / 2 (dashed line) up to a cutoff which depends on the 
grid size. The data, re-plotted from Figure 4 of [11], shows the probability of observing an avalanche 
covering a given number of electrodes for three sets of grid sizes shown in the insets with n= 15, 30 or 60 
sensing electrodes (equally spaced at 200jUm). The statistics is taken from data collected from 7 cultures 
in recordings lasting a total of 70 hours and accumulating 58000 (H— 55000) avalanches per hour (mean 
+ - SD). 

The most significant theoretical effort to elucidate the mechanisms underlying neu
ronal avalanches was reported recently by Levina and colleagues [28]. They considered 
a network model of excitable elements with random connectivity in which the coupling 
is activity dependent, such that, as in reality, too much activity exhausts the synaptic 
resources. This induces a decreasing in coupling strength which in turn decreases the 
propagation of activity. The interaction between activity and coupling results in a self-
organized drifting of the dynamic towards a critical avalanching activity with the statis
tics reported in Plenz' experiments. Further work is needed to see other spatiotemporal 
properties of neuronal avalanches to check if they follows the mechanism suggested by 
Levina etal. [28]. 

4.2. Functional brain networks are complex 

Functional magnetic resonance imaging (fMRI) allows us to non-invasively monitor 
spatio-temporal brain activity under various cognitive conditions. Recent work using this 
imaging technique demonstrated complex functional networks of correlated dynamics 
responding to the traffic between regions, during behavior or even at rest (see methods 
in [21]. The data was analyzed in the context of complex networks (for a review see 
[42]). During any given task the networks were constructed first by calculating linear 
correlations between the time series of the blood oxygenated level dependent (BOLD) 
signal in each of 36 x 64 x 64 brain sites called voxels. After that, links were defined 
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10 10" 
Degree k 

FIGURE 3. A typical brain network extracted from the correlations of functional magnetic resonance 
images. Top panel shows a pictorial representation of the network. The bottom panel shows the degree 
distribution for two correlation thresholds r^. The inset depicts the degree distribution for an equivalent 
randomly connected network. Data re-plotted from [21]. 

between those brain sites whose BOLD temporal evolutions were correlated beyond a 
pre-estabhshed value r^. 

Figure 3, show a typical brain functional network extracted with this technique. The 
top panel illustrates the interconnected networks' nodes and the bottom panel shows the 
statistics of the number of links (i.e., the degree) per node. There are a few very well 
connected nodes in one extreme and a great number of nodes with a single connection. 
The typical degree distribution approaches a power law distribution with an exponent 
around 2. Other measures revealed that the number of links as a function of -physical-
distance between brain sites also decays as a power law, something already confirmed 
by others [39] using different techniques. Two statistical properties of these networks, 
path length and clustering, were computed as well. The path length (L) between two 
voxels is the minimum number of links necessary to connect both voxels. Clustering (C) 
is the fraction of connections between the topological neighbors of a voxel with respect 
to the maximum possible. IVIeasurements of L and C were also made in a randomized 
version of the brain network. L remained relatively constant in both cases while C in 
the random case were much smaller, implying that brain networks are "small world" 
nets, a property with several implications in terms of cortical connectivity, as discussed 
further in [43, 42, 4, 38]. In summary, the work in [21] shows that functional brain 
networks exhibit highly heterogeneous scale free functional connectivity with small 
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world properties. Although these results admit a few other interpretations, the long range 
correlations demonstrated in these experiments are consistent with the picture of the 
brain operating near a critical point, as will be further discussed below. Of course, further 
experiments are needed to specifically define and measure some order parameter to 
clarify the precise nature of these correlations. Furthermore, as more detailed knowledge 
of the properties of these networks is achieved, the need to integrate this data in a 
cohesive picture grows [44]. 

To gain insight into the possible dynamical origins of Eguiluz [21] findings we 
simulated the Ising model on a relatively small square lattice at the critical temperature. 
Then, as was done with the brain fMRI data, the hnear correlations between the time 
series of each one the lattice points (sj = ±1) were calculated: 

{s,it)sjit))-{s,it)){sjit)) 

where G^{s{t) = {s^{t)) - {s{t))^). 
Figure 4 illustrates typical results for the critical temperature. The distribution of 

correlations is approximately Gaussian, encompassing both positive as well as negative 
correlations (see the left panel of Figure 4). This is related to the large domains of 
equally oriented spins found at the critical temperature, which are positively correlated 
amongst themselves and negatively correlated to domains with opposite spin orientation. 
These counterbalanced correlations are only present at the critical temperature, since for 
supercritical temperatures all correlations vanish and for subcritical values only a large 
domain of a given orientation survive. 

In analogy with Eguiluz et al. methods, a correlation network was constructed by 
defining finks between those lattice points whose fluctuations correlated beyond a a 
given Tc value. The degree distribution for re = 0.4 is depicted in Figure 4 and 5, where 
it can be seen that there is a mode centered around four (i.e., the number of neighbors in 
the simulation) and then a long tail which resembles very much the experimental results 
shown previously. Further details can be appreciated more clearly in Figure 5. The top 
right panel shows the degree for each lattice point, and the top left a correlation map. 
Notice that the tail of the degree distribution in the previous figure corresponds here to 
the points in the two clusters with highest degree (colored yeUow-red). In the left panel, 
the origin of these clusters is clarified by selecting one of them as a seed (labeUed S) 
and plotting its correlation values with the rest of the lattice points. Typical time series 
of two nodes placed far away from the seed: one positively correlated (P) and the other 
negatively correlated (N) are also plotted in Fig. 5. Note that the two large anti-correlated 
domains correspond to the two hubs in the degree map. 

Of course, these numerical experiments are very far from representing anything close 
to the details of brain physiology. Nevertheless, they serve the purpose of showing that 
key features of the correlations seen in the fMRI experiments are also observed in a 
paradigmatic critical system. The main point of these results is to demonstrate that a 
correlation network with scale free degree distribution as reported by Eguiluz et al. [21] 
can be extracted from a dynamical system, providing is at a critical point, regardless of 
the underlying connectivity. The example shown here uses the worst case scenario of a 
lattice with only local connectivity, but we expect the main conclusions to remain the 
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FIGURE 4. Ising model at the critical temperature: Left plot shows the distribution of correlation 
values. Middle and right plots depict the degree distribution of the network extracted. Arrow point at 
degree=nn=4. Correlation network constructed as in [21] using a threshold r̂  > 0.4 . Simidation of Eq. 
1 with k= 1 and / = 1, discarding a transient Ngguil = 10* steps, we chose Nttme = 1000 configurations 
every Nsample = LxL = W^ steps. Each time step corresponds to a single spin flip. In all cases the system 
is at the critical temperature (Tc ̂  l.SJ/ks) 

same using other less ordered topologies. 
It is important to remark that the dynamics described arises in the Ising model with 

ferromagnetic interactions, i.e., there is only positive correlations between neighbor sites 
(analogous to have only "excitatory synapsis"). Despite its absence in Eq. 1, negative 
correlations emerge as a collective property of the critical dynamics. Accordingly, these 
negative correlations manifest at relatively long time scales (reflecting the collective 
movements of spins) and not at short time scales. This agrees well both with observations 
made from fMRI experiments and with those extracted from a detailed model of the 
cortex [26]. Finally another aspect to note is that the ratio between the area covered by 
positive and negative correlations equal to one (see Fig. 5), just as it observed in the 
brain of healthy people [8] as discussed in the next section. 

4.3. What state is the brain "resting state"? 

Over a decade ago [9] BOLD low-frequency fluctuations were shown to be correlated 
across widely spatially separated but functionally related brain regions (between left and 
right sensorimotor cortices) in subjects at rest. Brain "rest" can be defined - more or less 
unsuccessfully- as the state in which there is no exphcit brain input or output.^ 

Various groups have suggested that these fluctuations are of neuronal origin and 
correspond to the neuronal basehne or idle activity of the brain. These fluctuations 
exhibit long-range correlations with the power of the spectrum decaying as l/f^, with 

^ Readers familiar with Italian traditions advantageously can specify brain rest as the brain state resisting 
from "dolcefare niente". Translated literally it reads "sweet do nothing" or also the "sweet act of doing 
nothing". 

37 37

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.

Downloaded to  IP:  157.92.4.75 On: Thu, 12 Feb 2015 19:17:54



JO an £0 1DD 

I 

I 
'irniirM 
.•mil iM 
111 II IIBl 

1 , 1 , -

FIGURE 5. Ising model at the critical temperature: Top left: Correlations between the seed (S) and the 
rest of the lattice. Top right: Degree (k) of each lattice point. Bottom: Time series of three selected places, 
one for the seed (S) and one for a negatively (N) or positively (P) correlated point. Each time step here 
corresponds to lO'* single flip spins. 

j3 '-̂  1. Up until recendy these observations were considered a nuisance in the majority 
of neuroimaging studies and disregarded as unwanted noise, despite the fact that they 
are the basehne against which other task-related conditions are usually compared. 

The notion of a specific network of brain regions active in rest states was reinforced by 
the observation of a consistent pattern of deactivations seen across many goal-oriented 
tasks [40]. This observation coupled, with studies of cerebral blood flow led Raichle and 
colleagues [35] to propose a theory for the so caUed brain "default mode networks". This 
view sees BOLD signal decreases during cognitive tasks as one way to identify how the 
brain is active during rest. In other words, what part of the brain was more active during 
rest is inferred by identifying what is being deactivated during a given task. 

One simple way used to study this network is to look at the hnear correlations between 
the time series of BOLD activity of different regions of the brain [22]. Figure 6 shows 
a typical result from experiments in with the subjects were ask to track the height of 
a moving bar varying in time during fMRI data collection [8]. The depicted correlation 
maps were constracted by first extracting time series for the seeds (small green circles in 
Fig. 6, obtaining averaging a cube of 3x3x3 voxels) and then computing its correlation 
coefficient with the time series of aU the other brain voxels. This is equivalent to the 
correlation map shown previously for the Ising model (Fig. 5 top left panel). 

Figure 6 shows correlation maps associated with six predefined seed regions. Based 
on previous results, these seeds are known to be sensitive to the task being conducted. 
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FIGURE 6. Typical balanced correlated-anticorrelated spatial domains of brain fMRI recorded from 
human volunteers during a simple attention task (replotted from Baliki et al. [8]. These patterns are 
typical of healthy individuals, where the total area covered by positive correlations is approximately the 
same as that covered by negatively correlations. The data shows averaged z-score maps (for a group of 
15 volunteers) showing regions with significant correlations with the six seed regions (small circles). The 
results shown correspond to three task-negative seed regions: mPFC, PCC, and LP, as well as to three task-
positive seed regions: IPS, FEF, and MT Colors indicate regions with positive correlations (red-yellow) 
and negative correlations (blue-green); both have z-scores > 2.3 (p<0.01). The group z-score conjunction 
map below shows voxels significantly correlated or anti-correlated with at least five of the six seed regions. 

Three regions, referred to as task-positive regions, exhibit activity increases during the 
task, and three regions, referred to as task-negative regions, exhibit activity decreases 
(de-activation) during the attention task [22, 14]. Task-positive regions were centered in 
the intraparietal sulcus (IPS), the frontal eye field region (FEF), and the middle temporal 
region (MT). Task-negative regions were centered in the medial prefrontal (mPFC), 
posterior cingulate/precuneus (PCC), and lateral parietal cortex (LP). 

The correlation maps of Figure 6 summarize the functional co-activation between 
a given seed region and the rest of the cortex. These maps rephcate very closely the 
ones described at rest [22, 29, 35, 36], since it is known that in minimally demanding 
tasks brain functional connectivity approximates the functional connectivity seen during 
rest [22, 24, 25]. It displays brain regions that are positively correlated (red-yellow 
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colors) and regions that are negatively correlated (blue-green colors) with any of the 
chosen seeds. An important experimental finding was that the ratio between the area 
covered by positive correlations and those with negative correlations was always very 
close to one [8] (see Fig. 5 and Fig. 6). This was consistently found in all healthy 
volunteers analyzed up to now. However, the same analysis carried out in patients that 
have suffered chronic pain for many years, revealed a ratio up to forty times larger [8]. 
This suggests a healthy dynamic balance of the resting state network, which deserves to 
be explored further. 

The brain is clearly not a lattice and the connectivity is not homogeneous. More
over the "small world" features revealed by fMRI described earlier are also found in the 
anatomical connectivity [43]. Thus, finding in any given complex spatiotemporal pat
terns what is due to the dynamics and what is induced by the underlying stracture is still 
a difficult problem. 

In an attempt to gain insight into the brain resting state fluctuations. Honey et al. [26], 
simulated the cerebral cortex using neuronal dynamics under the real structural connec
tions given by known large scale connectivity. According with their results, coupled ex
citable elements embedded in this type of anatomical architecture, favors the emergence 
of spatio-temporal pattems such as those observed in the brain at resting condition. For 
instance, they found that the functional connectivity seen in the BOLD signal are present 
at low frequency as a result of fluctuations in the aggregate number of transients cou
plings and decoupling occurring at a more rapid scale (« lOHz). At the slow time scale 
they identify two major anti-correlated functional clusters which, in their interpretation, 
are coordinated via anatomical connection patterns. Nevertheless, the results shown in 
Fig. 5 suggest that these anticorrelated clusters can be originated solely by the critical 
dynamics. 

The possibility which we favor is that the correlations seen during resting state are 
very similar to those described for the Ising model at the critical temperature. Of course, 
this similarity is not in the details, but in the fundamental aspects of the dynamics. 
In this view, spins are represented by entire regions of coherent neuronal groups, say 
for instance any of the seeds we choose in Figure 6. Thus, at each moment in time, 
each cortical region competes or cooperates according with the connectivity and the 
dynamics at that moment. The experimental observation that at any given time positive 
and negative correlations are equal is awaiting to be explained, and its implications for 
disease further explored. We claim that the brain is always near criticahty such that 
the spatiotemporal pattems iUustrated above should be scale-invariant, and some other 
temporal variables describing its evolution power law distributed. If that is the case, 
then the resting state dynamical equivalent is criticahty as in other extended non-linear 
systems near the edge of a phase transition. 

4.4. Epileptic seizures as brain quakes? 

In a recent paper, Osorio et al. [31] shows an interesting analysis of the temporal orga
nization of epileptic seizures. They studied very large catalogues of seismic activity and 
epileptic seizures with special attention to the statistical distribution of event sizes, and 
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waiting time between these events. Their analysis reveals an striking analogy between 
the dynamics of seizures and well known power laws goveming earthquakes such as the 
Gutemberg-Ritcher and Omori laws. 

Some counterintuitive conclusions are worth to mention, already noted for earth
quakes [5], such as the meaningless use of intensity and duration to characterize a given 
seizure. This is analogous to the scale invariance noticed already in the analysis of earth
quakes. In earthquakes, (as now seems in seizures) it is known that to establish the prob
ability of any event one must specify a time window, a spatial grid size, and a given 
intensity of that event. 

Osorio et al.'s approach also elegantly answers the classical question of why a seizure 
stops. An earthquake stops spontaneously whenever it has released the excess energy 
accumulated. In geology terminology an earthquake "starts without knowing how big 
is going to be or how long it is going to last". Neuronal avalanches, according to 
Plenz' work described earlier, also obey the same laws. According to the findings of 
Osorio et al. the mechanism by which seizures stop is related with the same critical 
process that triggers them. The authors comment that "scale invariance in seizures may 
be conceptuahzed as the hallmark of certain complex systems (the brain in this case) 
in which, at or near the critical point, its component elements (neurons) are correlated 
over all existing spatial (minicolum, column, macrocolum, etc.) and temporal scales 
(microseconds, seconds, tens of seconds, etc.)" 

The similarities uncovered by Osorio et al. suggest that the researchers' intuition re
garding the statistical laws goveming epileptic seizures need to be adjusted accordingly. 

4.5. Senses are critical 

Of course brains are useful to escape from predators, move around, choose a mate or 
find food, and in these respects the sensory apparatus is critical for any animal survival. 
Recent results indicate that senses are also critical in the thermodynamic sense of the 
word. Consider first the fact that the density distribution of the various form of energy 
around us is clearly inhomogeneous, at any level of biological reahty, from the sound 
loudness any animal have to adapt, to the amount of rain a vegetable have to take 
advantage. From the extreme darkness of a deep cave to the brightest flash of light there 
are several order of magnitude changes; nevertheless our sensory apparatus is able to 
inform the brain of such changes. 

It is weU known that isolated neurons are unable to do that because of their hmited 
dynamic range, which spans only a single order of magnitude. This is the oldest unsolved 
problem in the field of psychophysics, tackled very recently by Kinouchi and Copelh 
[27] by showing that the dynamics emerging from the interaction of coupled excitable 
elements, is the key to solving the problem. Their results show that a network of 
excitable elements set precisely at the edge of a phase transition - or, at criticahty -
can be both, extremely sensitive to smaU perturbations and still able to detect large 
inputs without saturation. This is generic for any network regardless of the neurons' 
individual sophistication. The key aspect in the model is a local parameter controUing 
the amplification of any initial firing activity. Whenever the average amphfication is 
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Branching ratio 

FIGURE 7. Sensory networks constructed with branching ratios close to one maintain, on the average, 
the input activity (green, followed by yellow and red), thus optimizing the dynamic range. In supercritical 
networks, however, activity explodes, while in subcritical ones are unable to sustain any input pattern. 
Redrawn from [17]. 

very small activity dies out, as it can be seen in the cartoon of Figure 7. In this case the 
system is subcritical and not sensitive to small inputs. On the other hand, choosing an 
amplification very large one sets up the conditions for a supercritical reaction in which 
for any - even very small - inputs the entire network fires. It is only in between these 
two extremes that the networks have the largest dynamic range. Thus, amplification 
around unity, i.e., at criticality, seems to be the optimum condition for detecting large 
energy changes as an animal encounters in the real world [17]. Of course, in a critical 
world energy is dissipated as a fractal in space and time with the characteristic highly 
inhomogeneous fluctuations. As long as the world around is critical, it seems that the 
evolving organisms embedded in it have no better choice than to be critical as weU. 

5. OUTLOOK 

The study of coUective phenomena is at the center of statistical physics. It is not 
surprising then, to see the recent outburst of physics and mathematics pubhcations 
studying this type of phenomena in the context of computer science as well as social 
and economic settings. While in all these fields there is a clear transfer of methods and 
ideas from statistical physics, identical flow has yet to start in brain science. 

This lack of communication is even more intriguing if one considers that most see 
brain science precisely as the study of coUective patterns of neuronal activity. Nonethe
less, this acknowledgment had not yet been translated into useful approaches. To the 
contrary, the literature contains numerous old and new promises to understand brain 
function by way of very large (and in some cases very detailed) numerical simulations 
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of millions of neurons, completely orphan of considerations related with the statistical 
physics of collective phenomena in large systems. 

To make the point above relevance of these ideas, let us recall once more the results 
presented in Figure 5 and the connectivity between the sites revealed in Figure 4. As 
it was discussed, on one side the connectivity says that the system is a lattice with 
only four nearest neighbors, but the correlations reveal a network with scale-free degree 
distribution. It seems to be a gross contradiction, but the apparent divorce between the 
pattems dictated by the couphng equations and those found by the analysis of the spatial 
correlations will not surprise those already familiar with emergent phenomena at the 
critical state. Again, lets remind ourselves that the divorce between "anatomy" (i.e., 
the coupling) and dynamics disappears both in the supercritical and subcritical state 
(as correlations vanish). Now, let suppose that the time series data in Figure 5 were to 
be from a typical brain experiment. Classical approaches of brain connectivity, based 
either in the analysis of correlations (i.e., so-called "functional" connectivity or in the 
anatomical (i.e., "effective") connections could never reach to the right conclusion and 
solve the puzzle. It is only by knowing about the features of critical phenomena that the 
apparent puzzle can be solved. As far as we know, there is no report in the hterature 
suggesting changes in the character of the functional connectivity due to the dynamics 
at the critical point as we suggest here. 

In summary, according with the proposal reviewed here, several relevant aspects of 
brain dynamics can be only understood using the theoretical framework as for any 
nonequihbrium thermodynamic system near the critical point of a second order phase 
transition. That include the understanding of neuronal dynamics at small scale, the 
cooperative-competitive equilibrium seen at rest in the healthy cortex, the burst of brain 
quakes during seizures and the optimization of the dynamic range at the sensory periph
ery. We have mentioned but left out the discussion of behavior, which understanding we 
submit should also benefit from this approach. 

Some of the ideas here are novel, but the motivation is not, since Ashby was probably 
the first to indicate how fundamental is to understand the way self-organization shapes 
brain function [1]. Nevertheless, these views are gaining momentum, and is refreshing 
to read recent reviews [53, 54, 55] advocating the further study of phase transitions, 
metastability and criticahty in cognitive models and experiments. This enlightening 
perspective is even more meaningful coming from those that first introduced information 
theory to the study of sensation in neuroscience,... forty three years ago [56]. 
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