145 research outputs found

    Light scattering study of the diffusion of interacting particles

    Get PDF
    The diffusion coefficient of a water-in-oil microemulsion has been measured as a function of the concentration of the suspended particles using photon correlation techniques. The data have been analysed using an extension of the thermo-hydrodynamic theory of G. K. Batchelor to the case of a potential of mean force between particles which consists of a hard-core repulsion and an attractive part. The parameters for this potential are consistent with those obtained from the osmotic compressibility as determined by static light scattering

    Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours

    Get PDF
    The release of anthropogenic toxic pollutants into the atmosphere is a worldwide threat of growing concern. In this regard, it is possible to take advantage of the high versatility of MOFs materials in order to develop new technologies for environmental remediation purposes. Consequently, one of the main scientific challenges to be achieved in the field of MOF research should be to maximize the performance of these solids towards the sensing, capture and catalytic degradation of harmful gases and vapors by means of a rational control of size and reactivity of the pore walls that are directly accessible to guest molecules.The authors are grateful for the generous support by the Spanish Ministries of Economy (project: CTQ2011-22787) and Defense (COINCIDENTE Program) as well as Junta de Andalucia (P09-FQM-4981)

    Host-guest and guest-guest interactions between xylene isomers confined in the MIL-47(V) pore system

    Get PDF
    The porous MIL-47 material shows a selective adsorption behavior for para-, ortho-, and meta-isomers of xylenes, making the material a serious candidate for separation applications. The origin of the selectivity lies in the differences in interactions (energetic) and confining (entropic). This paper investigates the xylene-framework interactions and the xylene-xylene interactions with quantum mechanical calculations, using a dispersion-corrected density functional and periodic boundary conditions to describe the crystal. First, the strength and geometrical characteristics of the optimal xylene-xylene interactions are quantified by studying the pure and mixed pairs in gas phase. An extended set of initial structures is created and optimized to sample as many relative orientations and distances as possible. Next, the pairs are brought in the pores of MIL-47. The interaction with the terephthalic linkers and other xylenes increases the stacking energy in gas phase (-31.7 kJ/mol per pair) by roughly a factor four in the fully loaded state (-58.3 kJ/mol per xylene). Our decomposition of the adsorption energy shows various trends in the contributing xylene-xylene interactions. The absence of a significant difference in energetics between the isomers indicates that entropic effects must be mainly responsible for the separation behavior

    Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM

    Get PDF
    This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al2O3 support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10 mbar air at 650 degrees C. Time-resolved image series unequivocally reveal that the sintering of Pt nanoparticles was mediated by an Ostwald ripening process. A statistical analysis of an ensemble of Pt nanoparticles shows that the particle size distributions change shape from an initial Gaussian distribution via a log-normal distribution to a Lifshitz-Slyozov-Wagner (LSW) distribution. Furthermore, the time-dependency of the ensemble-averaged particle size and particle density is determined. A mean field kinetic description captures the main trends in the observed behavior. However, at the individual nanoparticle level, deviations from the model are observed suggesting in part that the local environment influences the atom exchange process

    Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    Get PDF
    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes
    • …
    corecore