82 research outputs found

    Stress deficits in reward behaviour are associated with and replicated by dysregulated amygdala-nucleus accumbens pathway function in mice

    Full text link
    Reduced reward interest/learning and reward-to-effort valuation are distinct, common symptoms in neuropsychiatric disorders for which chronic stress is a major aetiological factor. Glutamate neurons in basal amygdala (BA) project to various regions including nucleus accumbens (NAc). The BA-NAc neural pathway is activated by reward and aversion, with many neurons being monovalent. In adult male mice, chronic social stress (CSS) leads to reduced discriminative reward learning (DRL) associated with decreased BA-NAc activity, and to reduced reward-to-effort valuation (REV) associated, in contrast, with increased BA-NAc activity. Chronic tetanus toxin BA-NAc inhibition replicates the CSS-DRL effect and causes a mild REV reduction, whilst chronic DREADDs BA-NAc activation replicates the CSS effect on REV without affecting DRL. This study provides evidence that stress disruption of reward processing involves the BA-NAc neural pathway; the bi-directional effects implicate opposite activity changes in reward (learning) neurons and aversion (effort) neurons in the BA-NAc pathway following chronic stress

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Tracing the Distribution of European Lactase Persistence Genotypes Along the Americas

    Get PDF
    In adulthood, the ability to digest lactose, the main sugar present in milk of mammals, is a phenotype (lactase persistence) observed in historically herder populations, mainly Northern Europeans, Eastern Africans, and Middle Eastern nomads. As the –13910∗T allele in the MCM6 gene is the most well-characterized allele responsible for the lactase persistence phenotype, the –13910C > T (rs4988235) polymorphism is commonly evaluated in lactase persistence studies. Lactase non-persistent adults may develop symptoms of lactose intolerance when consuming dairy products. In the Americas, there is no evidence of the consumption of these products until the arrival of Europeans. However, several American countries’ dietary guidelines recommend consuming dairy for adequate human nutrition and health promotion. Considering the extensive use of dairy and the complex ancestry of Pan-American admixed populations, we studied the distribution of –13910C > T lactase persistence genotypes and its flanking haplotypes of European origin in 7,428 individuals from several Pan-American admixed populations. We found that the –13910∗T allele frequency in Pan-American admixed populations is directly correlated with allele frequency of the European sources. Moreover, we did not observe any overrepresentation of European haplotypes in the –13910C > T flanking region, suggesting no selective pressure after admixture in the Americas. Finally, considering the dominant effect of the –13910∗T allele, our results indicate that Pan-American admixed populations are likely to have higher frequency of lactose intolerance, suggesting that general dietary guidelines deserve further evaluation across the continent

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access
    corecore