115 research outputs found
Strained graphene: tight-binding and density functional calculations
We determine the band structure of graphene under strain using density
functional calculations. The ab-initio band strucure is then used to extract
the best fit to the tight-binding hopping parameters used in a recent
microscopic model of strained graphene. It is found that the hopping parameters
may increase or decrease upon increasing strain, depending on the orientation
of the applied stress. The fitted values are compared with an available
parametrization for the dependence of the orbital overlap on the distance
separating the two carbon atoms. It is also found that strain does not induce a
gap in graphene, at least for deformations up to 10%
Dietary inflammatory index and metabolic syndrome in Iranian population (Fasa Persian Cohort Study)
Metabolic syndrome (MetS) is one of the risk factors for all causes of mortality. Inflammation is an important risk factor for MetS. The present cross-sectional study aimed to investigate the relationship between MetS and pro-inflammatory diet by using the food inflammation index (DII). This study consists of 10,017 participants with an age range of 35 to 70 years. The Fasa Cohort Study (FACS) population (Fars Province, Iran) was used to collect data. The DII was estimated according to Shivappa et al. method using a validated 125-item FFQ. To determine the association between MetS components and DII Logistic regression was used (P>0.05). The overall mean of DII was-0.89 +/- 1.74. However, adjusted multinomial logistic regression indicates each unit increase in waist circumference (WC) (OR 0.98, 95% CI 0.96-0.99) and HDL-C (OR 0.99, 95% CI 0.98-0.99) was associated with significantly decreased odds of being in the 4th DII quartile in men and all participations respectively, there is no statistically significant relationship between MetS and DII. Overall, although people in the highest quartile of inflammatory food consumption had more likely to develop MetS, this relationship was not statistically significant among males and females.
Plus:CARDIOVASCULAR RISK; ASSOCIATION; PATTERNS; DISEASE; OBESITY; HEALTH; STRATEGIES; MORTALITY; CANCE
The association between energy-adjusted dietary inflammatory index and metabolic syndrome and its mediatory role for cardiometabolic diseases: a prospective cohort study
BackgroundMetabolic syndrome (MetS) is a collection of medical conditions that elevate the chance of cardiovascular disease. An unhealthy diet is a major risk factors for MetS through different mechanisms, especially systemic chronic inflammation.ObjectiveThis study aimed to investigate the effect of dietary inflammatory potential on MetS incidence and the role of MetS in the association between Energy-adjusted dietary inflammatory index (E-DII) and cardiometabolic diseases.MethodsIn this prospective cohort study, 10,138 participants were recruited. All participants were divided into MetS or non-MetS groups based on the Adult Treatment Panel III criteria. The E-DII was used to assess the inflammatory potential of diet. After excluding the participants with MetS at baseline, 2252 individuals were followed for 5 years (longitudinal phase), and the effect of E-DII on MetS incidence was investigated using logistic regression models (p-value <0.05).ResultsThe cohort’s mean age (45.1% men) was 48.6 ± 10.0 years. E-DII ranged from −6.5 to 5.6 (mean: −0.278 ± 2.07). Higher E-DII score had a 29% (95%CI: 1.22–1.36) increased risk for incidence of MetS and its components during five-year follow-up. Also, E-DII was significantly associated with the prevalence of MetS (OR = 1.55, 95%CI: 1.51–1.59). Among MetS components, E-DII had the strongest association with waist circumference in the cross-sectional study (OR = 2.17, 95%CI: 2.08–2.25) and triglyceride in the longitudinal study (OR = 1.19, 95%CI: 1.13–1.25). The association between E-DII and MetS was consistent in both obese (OR = 1.13, 95%CI:1.05–1.21) and non-obese (OR = 1.42, 95%CI: 1.27–1.60) individuals and stronger among non-obese participants. Additionally, MetS mediated the association between E-DII and hypertension, diabetes, and myocardial infarction.ConclusionIn conclusion, a pro-inflammatory diet consumption is associated with a higher risk of MetS and its components. Furthermore, a pro-inflammatory diet increases the risk of cardiometabolic diseases. The higher E-DII had a stronger association with MetS, even among normal-weight individuals
Multimodal microscopy for automated histologic analysis of prostate cancer
<p>Abstract</p> <p>Background</p> <p>Prostate cancer is the single most prevalent cancer in US men whose gold standard of diagnosis is histologic assessment of biopsies. Manual assessment of stained tissue of all biopsies limits speed and accuracy in clinical practice and research of prostate cancer diagnosis. We sought to develop a fully-automated multimodal microscopy method to distinguish cancerous from non-cancerous tissue samples.</p> <p>Methods</p> <p>We recorded chemical data from an unstained tissue microarray (TMA) using Fourier transform infrared (FT-IR) spectroscopic imaging. Using pattern recognition, we identified epithelial cells without user input. We fused the cell type information with the corresponding stained images commonly used in clinical practice. Extracted morphological features, optimized by two-stage feature selection method using a minimum-redundancy-maximal-relevance (mRMR) criterion and sequential floating forward selection (SFFS), were applied to classify tissue samples as cancer or non-cancer.</p> <p>Results</p> <p>We achieved high accuracy (area under ROC curve (AUC) >0.97) in cross-validations on each of two data sets that were stained under different conditions. When the classifier was trained on one data set and tested on the other data set, an AUC value of ~0.95 was observed. In the absence of IR data, the performance of the same classification system dropped for both data sets and between data sets.</p> <p>Conclusions</p> <p>We were able to achieve very effective fusion of the information from two different images that provide very different types of data with different characteristics. The method is entirely transparent to a user and does not involve any adjustment or decision-making based on spectral data. By combining the IR and optical data, we achieved high accurate classification.</p
TNFR1 inhibition with a nanobody protects against EAE development in mice
TNF has as detrimental role in multiple sclerosis (MS), however, anti-TNF medication is not working. Selective TNF/TNFR1 inhibition whilst sparing TNFR2 signaling reduces the pro-inflammatory effects of TNF but preserves the important neuroprotective signals via TNFR2. We previously reported the generation of a Nanobody-based selective inhibitor of human TNFR1, TROS that will be tested in experimental autoimmune encephalomyelitis (EAE). We specifically antagonized TNF/TNFR1 signaling using TROS in a murine model of MS, namely MOG(35-55)-induced EAE. Because TROS does not cross-react with mouse TNFR1, we generated mice expressing human TNFR1 in a mouse TNFR1-knockout background (hTNFR1 Tg), and we determined biodistribution of Tc-99m-TROS and effectiveness of TROS in EAE in those mice. Biodistribution analysis demonstrated that intraperitoneally injected TROS is retained more in organs of hTNFR1 Tg mice compared to wild type mice. TROS was also detected in the cerebrospinal fluid (CSF) of hTNFR1 Tg mice. Prophylactic TROS administration significantly delayed disease onset and ameliorated its symptoms. Moreover, treatment initiated early after disease onset prevented further disease development. TROS reduced spinal cord inflammation and neuroinflammation, and preserved myelin and neurons. Collectively, our data illustrate that TNFR1 is a promising therapeutic target in MS
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world
Diminishing benefits of urban living for children and adolescents’ growth and development
Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
- …