169 research outputs found

    Colour preference of the deer ked Lipoptena fortisetosa (Diptera: Hippoboscidae)

    Get PDF
    SIMPLE SUMMARY: Insects use visual stimuli to find habitats, food, or a mate while moving around. This trait might be exploited to intercept flying insects to monitor their populations and reduce their presence. Among the various visual stimuli, colours are commonly used to attract insects. Lipoptena fortisetosa is a hematophagous deer ectoparasite native to Japan that has spread to several central European countries and was recently recorded in Italy. Measures to monitor and control L. fortisetosa would be helpful given its potential threat as a pathogen vector for animals and humans. The objective of this research was to assess the potential use of colour to attract and trap L. fortisetosa. The response of the winged adults was evaluated through an experimental trial carried out in a wooded area of Tuscany using differently coloured sticky panels as traps. Blue panels attracted the highest number while yellow panels showed the lowest performance. This preference for blue could be useful in the design of traps to reduce the population of this parasitic fly which, at certain times, can reach a very high density, causing annoyance to wildlife and humans visiting natural areas. ABSTRACT: Lipoptena fortisetosa, a deer ked native to Japan, has established itself in several European countries and was recently recorded in Italy. This hippoboscid ectoparasite can develop high density populations, causing annoyance to animals and concern regarding the potential risk of transmitting pathogens to humans. No monitoring or control methods for L. fortisetosa have been applied or tested up to now. This research evaluated the possible response of L. fortisetosa winged adults to different colours as the basis for a monitoring and control strategy. In the summer of 2020, a series of six differently coloured sticky panels were randomly set as traps in a wooded area used by deer for resting. The results indicated a clear preference of the deer ked for the blue panels that caught the highest number of flies during the experimental period. Lower numbers of flies were trapped on the red, green, black, and white panels, with the yellow panels recording the fewest captures. The response clearly demonstrates that this species displays a colour preference, and that coloured traps might be useful for monitoring and limiting this biting ectoparasite in natural areas harbouring wildlife and visited by people

    Enseñar y aprender matemática discreta a través de un aula virtual

    Get PDF
    En el año 2008 la cátedra de matemática discreta de la carrera ingeniería en Sistemas de Información de la facultad regional Buenos Aires de la Universidad Tecnológica Nacional fue convocada por la secretaría académica para poner en marcha la modalidad de cursado semi presencial como espacio de formación para alumnos que recursan. El objetivo de este trabajo es describir la puesta en marcha, a partir del año 2009, de esa modalidad. Nos proponemos caracterizar una experiencia de enseñanza- aprendizaje mediada por tecnología, a través de un entorno virtual convertido en “aula virtual”. Los docentes y estudiantes interactúan en un nuevo escenario pedagógico. La meta final es proporcionar la comprensión de las temáticas abordadas y la participación activa del estudiante en la construcción de su propio aprendizaje. Haremos referencia a cada una de las veces que se dictó la materia en forma no presencial pero sólo nos detendremos en la descripción de la última puesta en marcha

    Generation of the Becker muscular dystrophy patient derived induced pluripotent stem cell line carrying the DMD splicing mutation c.1705-8 T>C

    Get PDF
    Becker Muscular dystrophy (BMD) is an X-linked syndrome characterized by progressive muscle weakness. BMD is generally less severe than Duchenne Muscular Dystrophy. BMD is caused by mutations in the dystrophin gene that normally give rise to the production of a truncated but partially functional dystrophin protein. We generated an induced pluripotent cell line from dermal fibroblasts of a BMD patient carrying a splice mutation in the dystrophin gene (c.1705-8 T>C). The iPSC cell-line displayed the characteristic pluripotent-like morphology, expressed pluripotency markers, differentiated into cells of the three germ layers and had a normal karyotype

    A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum

    Get PDF
    Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3′ splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum

    A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum

    Get PDF
    Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3′ splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum

    Clinical variability at the mild end of BRAT1-related spectrum: Evidence from two families with genotype–phenotype discordance

    Get PDF
    Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder

    Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility

    Get PDF
    Ten to 15% of couples are infertile, with the most common causes being linked to the production of few or no oocytes or sperm. Yet, our understanding of human germ cell development is poor, at least in part due to the inaccessibility of early stages to genetic and developmental studies. Embryonic stem cells (ESCs) provide an in vitro system to study oocyte development and potentially treat female infertility. However, most studies of ESC differentiation to oocytes have not documented fundamental properties of endogenous development, making it difficult to determine the physiologic relevance of differentiated germ cells. Here, we sought to establish fundamental parameters of oocyte development during ESC differentiation to explore suitability for basic developmental genetic applications using the mouse as a model prior to translating to the human system. We demonstrate a timeline of definitive germ cell differentiation from ESCs in vitro that initially parallels endogenous oocyte development in vivo by single-cell expression profiling and analysis of functional milestones including responsiveness to defined maturation media, shared genetic requirement of Dazl, and entry into meiosis. However, ESC-derived oocyte maturation ultimately fails in vitro. To overcome this obstacle, we transplant ESC-derived oocytes into an ovarian niche to direct their functional maturation and, thereby, present rigorous evidence of oocyte physiologic relevance and a potential therapeutic strategy for infertility

    Germ cell sex determination in mammals

    Get PDF
    One of the major decisions that germ cells make during their development is whether to differentiate into oocytes or sperm. In mice, the germ cells’ decision to develop as male or female depends on sex-determining signalling molecules in the embryonic gonadal environment rather than the sex chromosome constitution of the germ cells themselves. In response to these sex-determining cues, germ cells in female embryos initiate oogenesis and enter meiosis, whereas germ cells in male embryos initiate spermatogenesis and inhibit meiosis until after birth. However, it is not clear whether the signalling molecules that mediate germ cell sex determination act in the developing testis or the developing ovary, or what these signalling molecules might be. Here, we review the evidence for the existence of meiosis-inducing and meiosis-preventing substances in the developing gonad, and more recent studies aimed at identifying these molecules in mice. In addition, we discuss the possibility that some of the reported effects of these factors on germ cell development may be indirect consequences of impairing sexual differentiation of gonadal somatic cells or germ cell survival. Understanding the molecular mechanisms of germ cell sex determination may provide candidate genes for susceptibility to germ cell tumours and infertility in humans
    corecore