1,585 research outputs found

    Effects of electromagnetic waves on the electrical properties of contacts between grains

    Full text link
    A DC electrical current is injected through a chain of metallic beads. The electrical resistances of each bead-bead contacts are measured. At low current, the distribution of these resistances is large and log-normal. At high enough current, the resistance distribution becomes sharp and Gaussian due to the creation of microweldings between some beads. The action of nearby electromagnetic waves (sparks) on the electrical conductivity of the chain is also studied. The spark effect is to lower the resistance values of the more resistive contacts, the best conductive ones remaining unaffected by the spark production. The spark is able to induce through the chain a current enough to create microweldings between some beads. This explains why the electrical resistance of a granular medium is so sensitive to the electromagnetic waves produced in its vicinity.Comment: 4 pages, 5 figure

    Discussion on: numerical methods in the definition of palynological assemblage zones in the Lower Karroo (Gondwana) of Rhodesia

    Get PDF
    Main articleSubsequent to the publication of the above paper (in which a number of errata appeared) certain points of discussion have been raised regarding the interpretation of the single axis spatial ordinations. In particular delineation of the numerical assemblage zones based upon the spacings between the clustered groups has been in question. In order to understand fully the significance of these groupings the following points should be borne in mind.Non

    MILES extended: Stellar population synthesis models from the optical to the infrared

    Get PDF
    We present the first single-burst stellar population models which covers the optical and the infrared wavelength range between 3500 and 50000 Angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical with our new infrared models that are based on the IRTF (Infrared Telescope Facility) library. The latter are available only for a limited range in terms of both age and metallicity. Our combined single-burst stellar population models were calculated for ages larger than 1 Gyr, for metallicities between [Fe/H] = -0.40 and 0.26, for initial mass functions of various types and slopes, and on the basis of two different sets of isochrones. They are available to the scientific community on the MILES web page. We checked the internal consistency of our models and compared their colour predictions to those of other models that are available in the literature. Optical and near infrared colours that are measured from our models are found to reproduce the colours well that were observed for various samples of early-type galaxies. Our models will enable a detailed analysis of the stellar populations of observed galaxies.Comment: 9 pages, 10 figures, published in A&

    Formation and evolution of dwarf early-type galaxies in the Virgo cluster II. Kinematic Scaling Relations

    Get PDF
    We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includes rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.Comment: 14 pages, 9 figures, 2 appendixes. Accepted for publication in A&

    Loop Estimator for Discounted Values in Markov Reward Processes

    Full text link
    At the working heart of policy iteration algorithms commonly used and studied in the discounted setting of reinforcement learning, the policy evaluation step estimates the value of states with samples from a Markov reward process induced by following a Markov policy in a Markov decision process. We propose a simple and efficient estimator called loop estimator that exploits the regenerative structure of Markov reward processes without explicitly estimating a full model. Our method enjoys a space complexity of O(1)O(1) when estimating the value of a single positive recurrent state ss unlike TD with O(S)O(S) or model-based methods with O(S2)O\left(S^2\right). Moreover, the regenerative structure enables us to show, without relying on the generative model approach, that the estimator has an instance-dependent convergence rate of O~(Ï„s/T)\widetilde{O}\left(\sqrt{\tau_s/T}\right) over steps TT on a single sample path, where Ï„s\tau_s is the maximal expected hitting time to state ss. In preliminary numerical experiments, the loop estimator outperforms model-free methods, such as TD(k), and is competitive with the model-based estimator.Comment: accepted to AAAI 202

    Single Stellar Populations in the Near-Infrared - I. Preparation of the IRTF spectral stellar library

    Get PDF
    We present a detailed study of the stars of the IRTF spectral library to understand its full extent and reliability for use with Stellar Population (SP) modeling. The library consist of 210 stars, with a total of 292 spectra, covering the wavelength range of 0.94 to 2.41 micron at a resolution R = 2000. For every star we infer the effective temperature (Teff), gravity (logg) and metallicity ([Z/Zsun]) using a full-spectrum fitting approach in a section of the K band (2.19 to 2.34 micron) and temperature-NIR colour relations. We test the flux calibration of these stars by calculating their integrated colours and comparing them with the Pickles library colour-temperature relations. We also investigate the NIR colours as a function of the calculated effective temperature and compared them in colour-colour diagrams with the Pickles library. This latter test shows a good broad-band flux calibration, important for the SP models. Finally, we measure the resolution R as a function of wavelength. We find that the resolution increases as a function of lambda from about 6 angstrom in J to 10 angstrom in the red part of the K-band. With these tests we establish that the IRTF library, the largest currently available general library of stars at intermediate resolution in the NIR, is an excellent candidate to be used in stellar population models. We present these models in the next paper of this series.Comment: 17 pages, 19 figures. Accepted for publication in Astronomy and Astrophysic

    Distribucion de recursos geneticos del CIP

    Get PDF
    • …
    corecore