3,391 research outputs found

    On the state of low luminous accreting neutron stars

    Full text link
    Observational appearance of a neutron star in the subsonic propeller state which is a companion of a wind-fed mass-exchange close binary system is discussed. During the subsonic propeller state the neutron star magnetosphere is surrounded by a spherical quasi-static plasma envelope, which is extended from the magnetospheric boundary up to the star accretion radius. The energy input to the envelope due to the propeller action by the neutron star exceeds the radiative losses and the plasma temperature in the envelope is of the order of the free-fall temperature. Under this condition the magnetospheric boundary is interchange stable. Nevertheless, I find that the rate of plasma penetration from the envelope into the magnetic field of the neutron star due to diffusion and magnetic field line reconnection processes is large enough for the accretion power to dominate the spindown power. I show that the accretion luminosity of the neutron star in the subsonic propeller state is 5*10**{30} - 10**{33} (dM/dt)_{15} erg/s, where dM/dt is the strength of the normal companion stellar wind which is parametrized in terms of the maximum possible mass accretion rate onto the neutron star magnetosphere. On this basis I suggest that neutron stars in the subsonic propeller state are expected to be observed as low luminous accretion-powered pulsars. The magnetospheric radius of the neutron star in this state is determined by the strength of the stellar wind, (dM/dt)_c, while the accretion luminosity is determined by the rate of plasma penetration into the star magnetosphere, (dM/dt)_a, which is (dM/dt)_a << (dM/dt)_c. That is why the classification of the neutron star state in these objects using the steady accretion model (i.e. setting (dM/dt)_a = (dM/dt)_c) can lead to a mistaken conclusion.Comment: 6 pages, accepted for publication in A&

    On the duration of the subsonic propeller state of neutron stars in wind-fed mass-exchange close binary systems

    Get PDF
    The condition for the subsonic propeller - accretor state transition of neutron stars in wind-fed mass-exchange binary systems is discussed. I show that the value of the break period, at which the neutron star change its state to accretor, presented by Davies & Pringle (1981) is underestimated by a factor of 7.5. The correct value is P_{\rm br} = 450 \mu_{30}^{16/21} \dot{M}_{15}^{-5/7} (M/M_{\sun})^{-4/21} s. This result forced us to reconsider some basic conclusions on the efficiency of the propeller spindown mechanism.Comment: 3 pages, published in A&A 368, L

    Corrosion Resistance of Steel/Zinc with Silicate Nanoparticles/Polyurethane Paint Systems in NaCl Solution

    Get PDF
    Surface characteristics and corrosion behaviour of bare electrogalvanized steel coated with polymer/nano-silicate particles added to the electrogalvanizing bath were studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDXS) and electrochemical impedance spectroscopy (EIS). After applying a barrier polyurethane paint, the paint hardness, porosity, flexibility, colour, gloss, blistering and rusting degrees, and anticorrosive protective properties in 0.05 mol·L-1 NaCl solution were also evaluated. The results correlated well and, being demonstrative of the very slow deterioration rate of the immersed coated electrogalvanized steel, they enabled to assume that if a chemically analogous but thicker coating system was applied; it could be an acceptable alternative in real service conditions.Fil: Célia R. Tomachuk. Energy And Nuclearresearch Institute; BrasilFil: Elsner, Cecilia Ines. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; ArgentinaFil: Di Sarli, Alejandro Ramón. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentin

    Tungsten cladding of reactor fuels

    Get PDF
    Tungsten cladding of reactor fuel

    The Anderson model of localization: a challenge for modern eigenvalue methods

    Get PDF
    We present a comparative study of the application of modern eigenvalue algorithms to an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for the large, sparse, real, symmetric, and indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation of Cullum and Willoughby with the implicitly restarted Arnoldi method coupled with polynomial and several shift-and-invert convergence accelerators as well as with a sparse hybrid tridiagonalization method. We demonstrate that for our problem the Lanczos implementation is faster and more memory efficient than the other approaches. This seemingly innocuous problem presents a major challenge for all modern eigenvalue algorithms.Comment: 16 LaTeX pages with 3 figures include

    Study of HST counterparts to Chandra X-ray sources in the Globular Cluster M71

    Full text link
    We report on archival Hubble Space Telescope (HST) observations of the globular cluster M71 (NGC 6838). These observations, covering the core of the globular cluster, were performed by the Advanced Camera for Surveys (ACS) and the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r_h = 1.65') of M71, we find 33 candidate optical counterparts to 25 out of 29 Chandra X-ray sources while outside the half-mass radius, 6 possible optical counterparts to 4 X-ray sources are found. Based on the X-ray and optical properties of the identifications, we find 1 certain and 7 candidate cataclysmic variables (CVs). We also classify 2 and 12 X-ray sources as certain and potential chromospherically active binaries (ABs), respectively. The only star in the error circle of the known millisecond pulsar (MSP) is inconsistent with being the optical counterpart. The number of X-ray faint sources with L_x>4x10^{30} ergs/s (0.5-6.0 keV) found in M71 is higher than extrapolations from other clusters on the basis of either collision frequency or mass. Since the core density of M71 is relatively low, we suggest that those CVs and ABs are primordial in origin.Comment: 12 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Transient Extremely Soft X-ray Emission from the Unusually Bright CV in the Globular Cluster M3: a New CV X-ray Luminosity Record?

    Full text link
    We observed the accreting white dwarf 1E1339.8+2837 (1E1339) in the globular cluster M3 in Nov. 2003, May 2004 and Jan. 2005, using the Chandra ACIS-S detector. The source was observed in 1992 to possess traits of a supersoft X-ray source (SSS), with a 0.1-2.4 keV luminosity as large as 2x10^{35} erg/s, after which time the source's luminosity fell by roughly two orders of magnitude, adopting a hard X-ray spectrum more typical of CVs. Our observations confirm 1E1339's hard CV-like spectrum, with photon index Gamma=1.3+-0.2. We found 1E1339 to be highly variable, with a 0.5-10 keV luminosity ranging from 1.4+-0.3x10^{34} erg/s to 8.5+4.9-4.6x10^{32} erg/s, with 1E1339's maximum luminosity being perhaps the highest yet recorded for hard X-ray emission onto a white dwarf. In Jan. 2005, 1E1339 displayed substantial low-energy emission below 0.3 keV. Although current Chandra responses cannot properly model this emission, its bolometric luminosity appears comparable to or greater than that of the hard spectral component. This raises the possibility that the supersoft X-ray emission seen from 1E1339 in 1992 may have shifted to the far-UV.Comment: ApJ in press, 6 pages, 5 figure

    Measurements with the Chandra X-Ray Observatory's flight contamination monitor

    Get PDF
    NASA's Chandra X-ray Observatory includes a Flight Contamination Monitor (FCM), a system of 16 radioactive calibration sources mounted to the inside of the Observatory's forward contamination cover. The purpose of the FCM is to verify the ground-to-orbit transfer of the Chandra flux scale, through comparison of data acquired during the ground calibration with those obtained in orbit, immediately prior to opening the Observatory's sun-shade door. Here we report results of these measurements, which place limits on the change in mirror--detector system response and, hence, on any accumulation of molecular contamination on the mirrors' iridium-coated surfaces.Comment: 7pages,8figures,for SPIE 4012, paper 7

    Accretion by Isolated Neutron Stars

    Get PDF
    Accretion of interstellar material by an isolated neutron star is discussed. The point I address here is the interaction between the accretion flow and the stellar magnetosphere. I show that the interchange instabilities of the magnetospheric boundary under the conditions of interest are basically suppressed. The entry of the material into the magnetosphere is governed by diffusion. Due to this reason the persistent accretion luminosity of isolated neutron stars is limited to < 4E+26 erg/s. These objects can also appear as X-ray bursters with the burst durations of about 30 minutes and repetition time of about 1E+5 yr. This indicates that the number of the accreting isolated neutron stars which could be observed with recent and modern X-ray missions is a few orders of magnitude smaller than that previously estimated.Comment: 3 pages, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Latest results on Jovian disk X-rays from XMM-Newton

    Get PDF
    We present the results of a spectral study of the soft X-ray emission (0.2-2.5 keV) from low-latitude (`disk') regions of Jupiter. The data were obtained during two observing campaigns with XMM-Newton in April and November 2003. While the level of the emission remained approximately the same between April and the first half of the November observation, the second part of the latter shows an enhancement by about 40% in the 0.2-2.5 keV flux. A very similar, and apparently correlated increase, in time and scale, was observed in the solar X-ray and EUV flux. The months of October and November 2003 saw a period of particularly intense solar activity, which appears reflected in the behaviour of the soft X-rays from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras, are all well fitted by a coronal model with temperatures in the range 0.4-0.5 keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86 keV): these are characteristic lines of solar X-ray spectra at maximum activity and during flares. The XMM-Newton observations lend further support to the theory that Jupiter's disk X-ray emission is controlled by the Sun, and may be produced in large part by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere of the planet.Comment: 17 pages, 7 figures, accepted for publication in a special issue of Planetary and Space Scienc
    corecore