Observational appearance of a neutron star in the subsonic propeller state
which is a companion of a wind-fed mass-exchange close binary system is
discussed. During the subsonic propeller state the neutron star magnetosphere
is surrounded by a spherical quasi-static plasma envelope, which is extended
from the magnetospheric boundary up to the star accretion radius. The energy
input to the envelope due to the propeller action by the neutron star exceeds
the radiative losses and the plasma temperature in the envelope is of the order
of the free-fall temperature. Under this condition the magnetospheric boundary
is interchange stable. Nevertheless, I find that the rate of plasma penetration
from the envelope into the magnetic field of the neutron star due to diffusion
and magnetic field line reconnection processes is large enough for the
accretion power to dominate the spindown power. I show that the accretion
luminosity of the neutron star in the subsonic propeller state is 5*10**{30} -
10**{33} (dM/dt)_{15} erg/s, where dM/dt is the strength of the normal
companion stellar wind which is parametrized in terms of the maximum possible
mass accretion rate onto the neutron star magnetosphere. On this basis I
suggest that neutron stars in the subsonic propeller state are expected to be
observed as low luminous accretion-powered pulsars. The magnetospheric radius
of the neutron star in this state is determined by the strength of the stellar
wind, (dM/dt)_c, while the accretion luminosity is determined by the rate of
plasma penetration into the star magnetosphere, (dM/dt)_a, which is (dM/dt)_a
<< (dM/dt)_c. That is why the classification of the neutron star state in these
objects using the steady accretion model (i.e. setting (dM/dt)_a = (dM/dt)_c)
can lead to a mistaken conclusion.Comment: 6 pages, accepted for publication in A&