We present a comparative study of the application of modern eigenvalue
algorithms to an eigenvalue problem arising in quantum physics, namely, the
computation of a few interior eigenvalues and their associated eigenvectors for
the large, sparse, real, symmetric, and indefinite matrices of the Anderson
model of localization. We compare the Lanczos algorithm in the 1987
implementation of Cullum and Willoughby with the implicitly restarted Arnoldi
method coupled with polynomial and several shift-and-invert convergence
accelerators as well as with a sparse hybrid tridiagonalization method. We
demonstrate that for our problem the Lanczos implementation is faster and more
memory efficient than the other approaches. This seemingly innocuous problem
presents a major challenge for all modern eigenvalue algorithms.Comment: 16 LaTeX pages with 3 figures include