227 research outputs found

    Epidemiology of occupational hypersensitivity pneumonitis; reports from the SWORD scheme in the UK from 1996 to 2015

    Get PDF
    Objective To estimate the reported incidence of occupational hypersensitivity pneumonitis (OHP) in the UK and to consider whether the pattern of attributed causation has changed over time. Methods All cases of OHP reported to the SWORD scheme between January 1996 and December 2015 were classified into 1 of 10 categories of the suspected agent. Cases were grouped into four 5-year time periods to examine any changing pattern in incidence or suspected causation. For each time period, the annual incidence was calculated using the estimated number of reported cases and the working population of the UK. Results Between 1996 and 2015, there were 202 actual cases of OHP reported to SWORD, equating to an estimated 818 cases, when adjusting for the sampling ratio. Over this period, the annual UK incidence was 1.4 per million workers. The mean (SD) age of reported cases was 52 (13) years, and cases were four-times more likely to be men than women. Over the study period, there was a fall in the proportion of cases reported to be due to agricultural exposures (44–12%), and an increase in cases due to metalworking fluids (MWFs, 2–45%). Conclusions Over the last 20 years, the incidence of OHP in the UK has been ∼1–2 cases per million workers per year. Working with water-based MWFs is now the most commonly suspected causative exposure for OHP cases reported to the SWORD scheme in the UK

    Imputation of Missing Genotypes from Sparse to High Density Using Long-Range Phasing

    Get PDF
    Related individuals share potentially long chromosome segments that trace to a common ancestor. We describe a phasing algorithm (ChromoPhase) that utilizes this characteristic of finite populations to phase large sections of a chromosome. In addition to phasing, our method imputes missing genotypes in individuals genotyped at lower marker density when more densely genotyped relatives are available. ChromoPhase uses a pedigree to collect an individual's (the proband) surrogate parents and offspring and uses genotypic similarity to identify its genomic surrogates. The algorithm then cycles through the relatives and genomic surrogates one at a time to find shared chromosome segments. Once a segment has been identified, any missing information in the proband is filled in with information from the relative. We tested ChromoPhase in a simulated population consisting of 400 individuals at a marker density of 1500/M, which is approximately equivalent to a 50K bovine single nucleotide polymorphism chip. In simulated data, 99.9% loci were correctly phased and, when imputing from 100 to 1500 markers, more than 87% of missing genotypes were correctly imputed. Performance increased when the number of generations available in the pedigree increased, but was reduced when the sparse genotype contained fewer loci. However, in simulated data, ChromoPhase correctly imputed at least 12% more genotypes than fastPHASE, depending on sparse marker density. We also tested the algorithm in a real Holstein cattle data set to impute 50K genotypes in animals with a sparse 3K genotype. In these data 92% of genotypes were correctly imputed in animals with a genotyped sire. We evaluated the accuracy of genomic predictions with the dense, sparse, and imputed simulated data sets and show that the reduction in genomic evaluation accuracy is modest even with imperfectly imputed genotype data. Our results demonstrate that imputation of missing genotypes, and potentially full genome sequence, using long-range phasing is feasible

    Comparison of risk-scoring systems in the prediction of outcome after liver resection

    Get PDF
    Background: Risk prediction techniques commonly used in liver surgery include the American Society of Anesthesiologists (ASA) grading, Charlson Comorbidity Index (CCI) and cardiopulmonary exercise tests (CPET). This study compares the utility of these techniques along with the number of segments resected as predictive tools in liver surgery. Methods: A review of a unit database of patients undergoing liver resection between February 2008 and January 2015 was undertaken. Patient demographics, ASA, CCI and CPET variables were recorded along with resection size. Clavien-Dindo grade III–V complications were used as a composite outcome in analyses. Association between predictive variables and outcome was assessed by univariate and multivariate techniques. Results: One hundred and seventy-two resections in 168 patients were identified. Grade III–V complications occurred after 42 (24.4%) liver resections. In univariate analysis of CPET variables, ventilatory equivalents for CO2 (VEqCO2) was associated with outcome. CCI score, but not ASA grade, was also associated with outcome. In multivariate analysis, the odds ratio of developing grade III–V complications for incremental increases in VEqCO2, CCI and number of liver segments resected were 1.09, 1.49 and 2.94, respectively. Conclusions: Of the techniques evaluated, resection size provides the simplest and most discriminating predictor of significant complications following liver surgery

    Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array

    Get PDF
    Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases. In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7 kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to the UMD3.1 assembly's efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development. In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7 kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to the UMD3.1 assembly's efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development. We present a comprehensive result of cattle CNVs at a higher resolution and sensitivity. We identified over 3,000 candidate CNV regions on both Btau_4.0 and UMD3.1, further compared current datasets with previous results, and examined the impacts of genome assemblies on CNV calling.https://doi.org/10.1186/1471-2164-13-37

    Auctioning Incentive Contracts: An Experimental Study

    Get PDF
    In this note, we experimentally examine the relative performance of price-only auctions and multi-attribute auctions. We do so in procurement settings where the buyer can give the winning bidder incentives to exert effort on non-price dimensions after the auction. Both auctions theoretically implement the surplus maximizing mechanism. Our experiment confirms this result. Moreover, we observe that the "pie" is shared the same in both auctions between buyer and suppliers both in theory and in the lab (after accounting for learning effects).Key words: Procurement; Price-only auctions; Multi-attribute auctions; Incentive Contracts; Laboratory Experimen
    • …
    corecore