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INTERPRETIVE SUMMARY 1	

Cow genotyping strategies for genomic selection in small dairy cattle population. By 2	

Jenko et al., page 000. The benefit of using cow genotypes for building training sets in small 3	

dairy populations was examined using the Guernsey breed. Adding genotypes from a single 4	

cohort of cows improved the accuracy of prediction substantially over a training set of 200 5	

bulls alone. For this population the genetic correlation for bulls and cows in the training set 6	

was <1. Strategies to improve the cost effectiveness of genotyping can also be beneficial. 7	

Genotyping all cows always gave the greatest accuracy, however, genotyping only half, 8	

divergently selected, recovered substantial information and was better than genotyping the 9	

same number when randomly- or directionally-selected.  10	
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ABSTRACT 30	

This study compares how different cow genotyping strategies increase the accuracy of 31	

genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these 32	

breeds there are few sires with progeny records and genotyping cows can improve the 33	

accuracy of genomic EBV. The Guernsey breed is a small dairy cattle breed with 34	

approximately 14,000 recorded individuals worldwide. Predictions of phenotypes of milk 35	

yield, fat yield, protein yield, and calving interval were made for Guernsey cows from England 36	

and Guernsey Island using genomic EBV, with training sets including 197 de-regressed proofs 37	

of genotyped bulls, with cows selected from among 1,440 genotyped cows using different 38	

genotyping strategies. Accuracies of predictions were tested using 10-fold cross-validation 39	

among the cows. Genomic EBV were predicted using four different methods: (i) pedigree 40	

BLUP, (ii) genomic BLUP using only bulls, (iii) univariate genomic BLUP using bulls and 41	

cows, and (iv) bivariate genomic BLUP. Genotyping cows with phenotypes and using their 42	

data for the prediction of single nucleotide polymorphism (SNP) effects increased the 43	

correlation between genomic EBV and phenotypes compared to using only bulls by 0.163 44	

± 0.022 for milk yield, 0.111 ± 0.021 for fat yield, and 0.113 ± 0.018 for protein yield, a drop 45	

of 0.014 ± 0.010 for calving interval from a low base was the only exception. Genetic 46	

correlation between phenotypes from bulls and cows were approximately 0.6 for all yield 47	

traits and significantly different from 1. There was only very small change in correlation 48	

between genomic EBV and phenotypes when using the bivariate model. It was always better 49	

to genotype all the cows but when only half of the cows were genotyped, a divergent 50	

selection strategy was better compared to the random or directional selection approach. 51	

Divergent selection of 30% of the cows remained superior for the yield traits in 8 of 10 folds. 52	

Keywords: genomic selection, genotyping cows, cow genotyping strategies, Guernsey  53	



INTRODUCTION 54	

Response to selection can be increased by changing the ratio of the accuracy of EBV to the 55	

generation interval, and an intermediate age exists where this ratio is maximised so defining the optimum 56	

selection age. For conventional evaluations based solely on pedigree and phenotypes the accuracy of 57	

parent average EBV are too low, precluding the intense selection of young bulls at birth. For this purpose 58	

bulls for widespread use are often selected only after the phenotypes of their first crop daughters are 59	

known, at around 5 years of age. A benefit of genomic selection is its potential to increase the accuracy of 60	

EBV early in life. To achieve this, a sufficient number of individuals with phenotypes or progeny records 61	

needs to be genotyped (Meuwissen et al., 2001). Based on this training set of individuals SNP effects 62	

are then estimated. These estimates can then be used for the calculation of genomic EBV of genotyped 63	

individuals without phenotypic observations on themselves, or lactating daughters in the case of 64	

young bulls. When the accuracy of a genomic EBV is high enough, the optimum selection age for the 65	

parents of a future generation can be lowered, reducing the generation interval. This might result in a 66	

doubling of the rate of genetic gain in dairy schemes compared with conventional breeding values 67	

(Schaeffer, 2006). 68	

The accuracy of a genomic EBV will be higher when the number of genotyped 69	

individuals with own performance or progeny records is large (Daetwyler et al., 2008, 2010; 70	

Goddard, 2009). In large populations, many sires have achieved very accurate progeny tests 71	

from large daughter groups, and have been genotyped. This has enabled the successful 72	

implementation of genomic selection in large populations of dairy cattle (VanRaden et al., 2009). 73	

However, for small cattle breeds genomic selection is still a challenge as their limited resources restricts 74	

the prediction accuracy, as either the number of sires with a large number of daughters is too small, or the 75	

progeny tests are weak. There are 3 possible solutions to overcome this problem. One is to include 76	

genotypes from the same breed but from the other country (Cooper et al., 2016), another is to 77	



combine the breed-specific reference population with other breeds (Hayes et al., 2009; Olson et al., 78	

2012; Hozé et al., 2014) and the last is to include cows in the reference population (Pryce et al., 79	

2012; Calus et al., 2013; Cooper at al., 2015). 80	

The success of combining the reference population with another breed depends on the genetic 81	

distance between them, numbers of genotyped individuals, and SNP chip density. Genomic evaluation 82	

requires that the different populations are at least distantly related (Habier et al., 2010). To increase 83	

genetic gain the reference population and selection candidates should share recent ancestors (Clark et 84	

al., 2012; Pszczola et al., 2012). This relationship is higher when genotypes from cows of the same 85	

breed are available compared to individuals from different breeds, but their accuracy is often smaller 86	

compared to de-regressed proofs of bulls from large breeds, and are typically expected to add less 87	

information per genotyped individual, although this difference depends on the heritability. De Roos 88	

(2011) estimated that the addition of 7 cows for a trait with a heritability of 0.1 gives the same gain 89	

as adding 1 bull with 100 tested progeny, while for the trait with a heritability of 0.5 this ratio reduced to 2 90	

cows per bull. Simulations performed by Jiménez-Montero et al. (2012) showed that not only the 91	

number of cow genotypes but also the genotyping design can increase the accuracy of genomic EBV. 92	

The accuracy of divergent selection on yield or breeding value deviations was higher than when selecting 93	

at random or based on the extreme values in the upper tail. 94	

The goal of this study was to estimate the benefit of using cow genotypes for genomic selection 95	

in a small dairy cattle population. An additional goal was to determine the effect of different cow 96	

genotyping strategies on the accuracy of selection. The Guernsey breed represented by bull and cow 97	

genotypes from England and Guernsey Island is a suitable population for this study. Guernsey is one of 98	

the smaller dairy breeds with approximately 14,000 recorded individuals worldwide and, of these, 2,000 99	

are on Guernsey Island. 100	



MATERIALS AND METHODS 101	

Study Samples 102	

A total of 1,637 genotypes from Guernsey cattle were available: 197 from bulls and 103	

1,440 from cows. Of the bull samples, 29 were genotyped with the Illumina BovineHD 104	

Genotyping BeadChip (777K; Illumina Inc., San Diego, CA) and 168 with the GeneSeek 105	

Genomic Profiler HD BeadChip Version 1 (75K; Neogen Corp., Lexington, KY). All of the 106	

cow samples were genotyped with the GeneSeek Genomic Profiler for Dairy Cattle Version 3 107	

(25K; Neogen Corp., Lexington, KY). 108	

Genotyped bulls were part of the artificial insemination program and were born 109	

between 1957 and 2013. Except for the most recent ones, they had daughters with records 110	

available and were included in genetic evaluations. One bull had both parents genotyped and 111	

75 bulls had one parent genotyped. Cows with genotypes were a cohort of Guernsey cows 112	

present on the Island in early 2014. They were born between 1997 and 2013 and were 113	

included in the milk recording scheme. There were 133 cows with both parents genotyped 114	

and 705 cows with one parent genotyped. 115	

Genotype Quality Check 116	

Before the genotypes were checked for quality, three individuals were discovered to 117	

have been repeated, and the sample with the higher call rate was kept. For all three chips, 118	

SNP were checked for the position and name: 199 SNP had the same name but different 119	

positions, or had different names but with the same position as another and these were 120	

excluded. The SNP on the sex chromosomes were excluded from all the chips. Individuals 121	

were excluded when overall call rate was <0.85 or heterozygosity was outside the interval of 122	

mean ± 3 SD calculated for the relevant SNP chip. Altogether, 107 samples from the 25K 123	



chip, 1 from the 75K chip and 1 from the 777K chip failed these criteria as shown in 124	

Appendix A. Then, SNP loci were excluded if call rate <0.85: 546 were excluded for the 25K 125	

chip, 1,327 for the 75K chip, and 12,712 for the 777K chip. For imputation, individuals 126	

genotyped with 777K were merged with 75K using only 72,679 SNP from the 75K chip. 127	

Finally, SNP with Hardy-Weinberg equilibrium test P < 10-6 or minor allele frequency 128	

(MAF) < 0.05 were removed, resulting in the availability of 64,657 and 17,716 SNP on the 129	

75K and 25K chip respectively.  130	

The pedigree relationship was checked separately for duos and trios using PLINK 131	

(Purcell et al., 2007) by comparing the known genotypes of parents and offspring. Parent-132	

offspring duos with more than 1% of opposing homozygosity were identified, and 1 case was 133	

discovered and the relationship was set to unrelated. For trios the percentage of opposing 134	

homozygous and heterozygous genotypes in the offspring for SNP where both of the parents 135	

were homozygous for the same allele was calculated, and if more than 1% were inconsistent, 136	

both parent-offspring relationships were set as missing, which occurred in 2 cases. For all the 137	

other instances, genotype inconsistencies between parents and progeny were corrected using 138	

conflict.f90, which corrects for Mendelian errors and fills missing SNPs using parental 139	

genotypes where possible (VanRaden et al., 2015). 140	

Genotype Imputation 141	

A 2-step imputation process (Figure 1) was conducted using the pedigree and FImpute 142	

(Sargolzaei et al., 2014). In the first step, SNP existing only on the 25K chip (5,733 SNP) 143	

were excluded and individuals with genotypes on 25K chip were imputed to the SNP existing 144	

on the 75K chip (64,657 SNP). After the first step, MAF was reviewed and SNP with MAF < 145	

0.05 were excluded. Then SNP excluded from the first step were re-introduced giving a total 146	

of 69,034 SNP available for the second imputation step, where loci only on the 25K chip 147	



were imputed for individuals genotyped only on the 75K chip. After the second step, MAF 148	

for all SNP was >0.05. 149	

» Figure 1 near here « 150	

Imputation accuracy and efficiency were tested on 1,333 cow genotypes with 11,983 151	

SNP existing on both 75K and 25K chip using 10-fold cross validation. For each fold 10% of 152	

SNP selected at random were set as missing and imputed so that each SNP was imputed 153	

exactly once. All of the 1,333 cow genotypes were used in each of the 10 folds. The 154	

imputation efficiency and accuracy were calculated as the correlation, genotype concordance, 155	

and allele concordance between the imputed and the true genotypes. 156	

Traits for Analysis 157	

The benefits of genotyping cows and different genotyping strategies were analysed 158	

for four traits: milk yield (kg), fat yield (kg), protein yield (kg), and calving interval (days). 159	

There were 2 types of data obtained: official Predicted Transmitting Abilities (PTA) for bulls 160	

and cows and daily milk records for cows. Profitable Lifetime Index (PLI) and Guernsey 161	

Merit Index (GMI) were also obtained for bulls and cows for the purpose of creating 162	

different selection subsets. The main difference between PLI and GMI is the emphasis put on 163	

production and functional traits. While PLI has about 32% weights on production traits and 164	

68% on fitness traits, GMI has 60% of weights on production traits and 30% on functional 165	

traits. The PTA, PLI, and GMI were obtained from the Interbull evaluation with multiple, 166	

across-country data carried out in April 2015. All the data were obtained from EGENES 167	

which provides genetic evaluations for UK dairy cattle on behalf of the Agricultural and 168	

Horticultural Development Board.  169	



Daily milk records from the first five lactations were obtained for milk, fat, and 170	

protein yield. They were transformed into standard 305 days lactation records using the test 171	

interval method (Sargent et al., 1968). As dry-off days were not available they were 172	

approximated: lactation length was set to 305 days when the last milk recording was done 31 173	

days or less before the 305 days of lactation; in all the other cases 31 days were added to the 174	

last milk recording to get the dry-off day. Lactations shorter than 201 days were discarded. 175	

Lactation yield records were corrected for the fixed effects of calving year-season, lactation 176	

number, and herd. Calving interval records were available for the first lactation only. They 177	

were corrected for the fixed effects of calving year-season and herd. Finally, adjusted 178	

phenotypes from cows combined with de-regressed proofs from bulls (see below) were used 179	

for the estimation of genomic and conventional breeding values. These values will be called 180	

phenotypes. This process resulted in double counting of data from cows that also were 181	

daughters of bulls included. After matching genotypes with phenotypes 1,492 individuals 182	

(185 bulls and 1,307 cows) remained for yield traits, 1,149 individuals (157 bulls and 992 183	

cows) remained for calving interval, and 1,403 individuals (157 bulls and 1,246 cows) had 184	

PLI and GMI indexes available. For bull PTA 2.3% of the 28,709 daughters contributing 185	

records were found among the genotyped cows, and in the distribution of genotyped cows to 186	

daughter contributions among the 185 bulls the median was 0 and the upper quartile was 3%. 187	

The PTA were multiplied by 2 to get EBV and de-regressed using the approach 188	

described by Garrick et al. (2009). Weights were calculated to allow for the unequal error 189	

variances of the de-regressed EBV; for each individual	𝑖, the weight 𝑤$ was calculated as: 190	

𝑤$ = (1 − ℎ*)/[(𝑐 + (1 − 𝑟$*)/𝑟$*)ℎ*] where c is the genetic variance not assigned to SNP 191	

effects and was defined to be 0.2 following the estimate of Daetwyler (2009) for the 50K 192	

Illumina SNP chip; ℎ* is the trait heritability; and 𝑟$* is the reliability of the de-regressed 193	

EBV. The value of c was assumed to be the same for all traits. Heritabilities assumed were 194	



0.55 for milk yield, 0.47 for fat yield, 0.51 for protein yield, and 0.033 for calving interval, 195	

which are those used for UK evaluations. Weights for repeated lactation milk records of cows 196	

were calculated as: 𝑤$ = (1 − ℎ*)/[(𝑐ℎ* + (1 + (𝑛 − 1)𝑡)/𝑛) − ℎ*] where 𝑛 is the number 197	

of lactations and t is the repeatability used for UK evaluations (0.82, 0.84, and 0.79 for milk, 198	

fat, and protein yield, respectively). The mean 𝑤$ for cows were: 0.97 (SD 0.11) for milk 199	

yield, 0.98 (SD 0.09) for fat yield, and 1.01 (SD 0.12) for protein yield. Because calving 200	

interval was available only for the first lactation 𝑤$ = 0.99 for all the cows. The weights for 201	

bulls were greater: 2.93 (SD 0.74) for milk yield, 4.03 (SD 1.02) for fat yield, 3.44 (SD 0.87) 202	

for protein yield, and 44.2 (SD 22.16) for calving interval. 203	

Prediction of Breeding Values 204	

Two univariate models and one bivariate model were used to calculate EBV using 205	

ASReml software (Gilmour et al., 2009). The 2 univariate models differed in the relationship 206	

matrix used. One used Wright’s Numerator Relationship Matrix 𝐀  and the other a genomic 207	

(𝐆) relationship matrix. The univariate model can be expressed as: 208	

𝐲 = 𝟏𝜇 + 𝐙𝐮 + 𝐞 209	

where 𝐲 is a vector of phenotypes; µ is the overall mean; 𝐙 is the incidence matrix linking the 210	

records from vector 𝐲 to vector 𝐮; 𝐮 is a vector of random genetic effects of the animals; 𝐞 is 211	

the vector of errors distributed as 𝑁(0, 𝜎@*𝐖B𝟏) with 𝐖B𝟏 diagonal matrix. The diagonal 212	

matrix 𝐖 contains the weights 𝑤$ for each individual as described above. 213	

Depending on the model, the variance of 𝐮 was Var 𝐮 = 𝐀𝛔𝒂𝟐	, where 𝛔𝒂𝟐 is additive 214	

genetic variance, or it was Var 𝐮 = 𝐆𝛔𝒈𝟐 , where 𝛔𝒈𝟐  is genetic variance associated with 𝐆. 215	

Matrix 𝐀 was calculated using the known pedigree, and matrix 𝐆 using the whole genome 216	

SNP data following VanRaden (2008): 217	



𝐆 =
𝐌𝐌K

𝟐 𝑝M(1 − 𝑝M)
NOPQ
M

 218	

where 𝐌 is a matrix of genotypes with elements M$M denoting the number of the counted 219	

allele for animal 𝑖 at SNP 𝑗 and expressed as the deviation from the SNP mean allele 220	

frequency of 2𝑝M, and NOPQ is the number of SNP. 221	

To examine if the correlation between the EBV obtained from bulls’ or cows’ 222	

genotypes was different from one, the following bivariate model was used: 223	

𝐲V
𝐲* = 𝟏′ 0

0 𝟏′
𝜇V
𝜇* + 𝐙V 0

0 𝐙*
𝐮V
𝐮* +

𝐞V
𝐞*  224	

where 𝐲V is a vector of bulls’ phenotypes with cows’ phenotypes set as missing; 𝐲* is a vector 225	

of cows’ phenotypes with bulls phenotypes set as missing; 𝜇V and 𝜇* are the overall mean 226	

values for bulls and cows; 𝐙V and 𝐙* are equal incidence matrices linking the records from 227	

vectors 𝐲V and 𝐲* to vectors 𝐮V and 𝐮*; 𝐮V and 𝐮* are vectors of random genetic effects of the 228	

animals; 𝐞V and 𝐞* are the vector of errors. 229	

The following (co)variance structure for random genetic effects is assumed: 230	

𝑣𝑎𝑟

𝐮V
𝐮*
𝐞V
𝐞*

=

𝜎Z[
* 𝐆 𝜎Z[\𝐆 0 0

𝜎Z\[𝐆 𝜎Z\
* 𝐆 0 0

0 0 𝜎@[
* 𝐖B𝟏 0

0 0 0 𝜎@\
* 𝐖B𝟏

 231	

where 𝜎Z[
*  and 𝜎Z\

*  are genetic variances explained with SNP effects estimates from bulls or 232	

cows; 𝜎Z[\ = 𝜎Z\[ is the genetic covariance between SNP effects estimates; 𝜎@[
*  and 𝜎@\

*  are 233	

the residual variances. 234	

Scenarios for Creating Reference Population 235	



In total 10 scenarios were compared using 10-fold cross-validation, with all scenarios 236	

tested on each validation set. In each fold 90% of cow records were available for estimating 237	

the SNP effects, and the remaining 10% of records used for validation and set to missing. 238	

Bulls were always included, as the central question was how to supplement the bull data with 239	

routine cow genotyping. Validation sets were created at random by sampling without 240	

replacement, so each cow appeared in only one validation set. The weighted correlation 241	

between the genomic EBV and phenotypes for the cows in the validation set was calculated 242	

within each fold with weights calculated as 𝑤$ = 1/[𝑡 + (1 − 𝑡)/𝑛], where 𝑡 is the 243	

repeatability. Means and approximate standard errors were calculated from the standard 244	

deviations across the cross-validation folds of estimates made within folds. An approximate 245	

one-tailed sign test was used in some comparisons to assess the significance of the difference 246	

in correlation between 2 scenarios. An observed improvement was judged as significant when 247	

the correlation was greater in at least 8 out of 10 folds, which has a Type 1 error of 5.5% 248	

when compared to Binomial(10,0.5). 249	

The 10 scenarios differed in the simulation of cow selective genotyping (Table 1). 250	

Within each fold of 10-fold cross-validation test selective genotyping was performed only on 251	

the cows for which records were available for estimating the SNP effects. When the cow was 252	

not selected to be genotyped her phenotype was set to missing so this cow did not contribute 253	

to the SNP effect estimates. In scenario 1 there were no cows genotyped whereas in all the 254	

other scenarios different proportion of cows were genotyped. Cows contributing genotypes 255	

were selected in four ways: (i) all cows; (ii) a random sample of half of the cows; (iii) cows 256	

with extreme phenotypes; and (iv) cows with extreme values in either tail. Selection of cows 257	

with extreme phenotypes was based on the: (i) percentage of cows selected for genotyping 258	

(50%, 40%, or 30%); and (ii) the trait used for selection of cows to be genotyped. The traits 259	



used for selection of cows to be genotyped were: (i) the trait for which EBV was calculated; 260	

(ii) milk yield; (iii) PLI; or (iv) GMI. 261	

» Table 1 near here « 262	

Quantitative Modelling of Genotyping Strategies. 263	

To validate and generalise the results of the cross-validation outcomes for genotyping 264	

strategy, the quantitative models of Daetwyler et al. (2008, 2010) were extended to cover the 265	

range of scenarios considered here. This development is described in detail in Appendix B.  266	

The predictions obtained were compared with the cross-validation outcomes for the 267	

production traits. 268	

RESULTS 269	

Imputation Accuracy 270	

The correlation between the true and imputed genotypes was 0.952 between 271	

individuals and 0.945 between SNP (Table 2). Genotype concordance was 0.961 and allele 272	

concordance was 0.980. The concordances were greater than correlations and were the same 273	

between individuals or between SNP. 274	

» Table 2 near here « 275	

Genotyping Cows 276	

Genotyping cows with phenotypes (scenario 2) and using their data for the prediction 277	

of SNP effects increased the correlation between phenotypes and genomic EBV (Table 3) 278	

compared to using a training set consisting of the genotyped bulls alone (scenario 1). Benefits 279	

were observed across all folds for all yield traits. For milk yield, when using univariate 280	

GBLUP, the correlation increased by 0.163 ± 0.022 to 0.376 ± 0.019 and was the highest 281	



among all the traits. For fat yield the correlation increased by 0.111 ± 0.021 to 0.347 ± 0.025, 282	

and for protein yield by 0.113 ± 0.018 to 0.323 ± 0.027. Calving interval was the exception 283	

where the correlation did not increase, it dropped from the low base of GBLUP (0.057 284	

± 0.029) by 0.014 ± 0.010 to 0.042 ± 0.031. Negative correlations with phenotypic calving 285	

interval were observed for 3 out of 10 folds for bulls alone, and 2 out of 10 after adding the 286	

cows. 287	

The training set of bulls and cows with genomic data using GBLUP improved the 288	

accuracy of prediction compared with classical BLUP. The increases in the correlation 289	

between GBLUP and BLUP approaches were by 0.060 ± 0.015 for milk, 0.036 ± 0.019 for 290	

fat, 0.033 ± 0.015 for protein, and 0.024 ± 0.024 for calving interval. For the yield traits the 291	

addition of the cow data to the training set spanned the tipping point so that the bulls’ 292	

genomic data alone provided less accurate predictions than BLUP, whereas with cows’ 293	

genomic data predictions were more accurate. 294	

The genetic correlation between the phenotypes from bulls and cows in the bivariate 295	

model was less than 1 (P<0.05) for all traits except for calving interval where it was not 296	

estimable. For milk, fat, and protein yields the estimates were 0.600 (± 0.142), 0.606 297	

(± 0.130), and 0.628 (± 0.144), respectively, whilst for calving interval there was a lack of 298	

convergence. When the bivariate model was used the correlation between phenotype and 299	

genomic EBV for milk yield did not change compared to the univariate model with bulls and 300	

cows, and changed only marginally for fat and protein yield. 301	

» Table 3 near here « 302	

Cow Genotyping Strategies 303	



Selecting a subset of cows for genotyping decreased the correlation between the 304	

phenotypes and genomic EBV for yield traits as might be expected (see Table 4; scenarios 2 305	

cf. 3). The largest decrease when genotyping only half of the cows selected at random was for 306	

milk yield where the correlation dropped from 0.376 by 0.055 ± 0.014 when using univariate 307	

GBLUP. For fat yield and protein yield these decreases were smaller but notable, 0.033 308	

± 0.012 and 0.036 ± 0.012. Given the low predictive accuracy obtained for calving interval 309	

and the scale of variation in validation sets the detailed results for this trait are not discussed 310	

although the results are shown in Table 4. 311	

The genotyping strategy was important when using a subset of individuals for 312	

training. Genotyping only the 50% of individuals which were in extreme within either tail of 313	

phenotypes increased the correlation between the phenotypes and genomic EBV and restored 314	

much of the loss in accuracy from genotyping only 50% the cows at random (Table 4; 315	

scenarios 5 cf. 3) with increases in accuracy of 0.048 ± 0.016, 0.026 ± 0.010, and 0.035 316	

± 0.012 for milk, fat, and protein yields, respectively. The greater accuracy from the 317	

divergent selection was observed in at least 8 out of 10 folds for all 3 yield traits. In contrast, 318	

genotyping only the 50% of phenotypes in upper tail decreased the correlation between the 319	

phenotypes and genomic EBV below that obtained from randomly selecting 50% for all yield 320	

traits (Table 4; scenarios 4 cf. 3) by 0.037 ± 0.016, 0.050 ± 0.013, and 0.041 ± 0.016. 321	

Reducing the percentage of genotyped cows with extreme phenotypes below 50% 322	

decreased the correlation between phenotypes and genomic EBV, but even when only 30% of 323	

cows were genotyped and selected from the extremes (scenario 7), the correlations for milk, 324	

fat, and protein yield were still higher than in scenario 3 where 50% of phenotypes were 325	

genotyped at random. These benefits were observed for at least 8 out of the 10 folds for all 326	

yield traits. Averaged over the 3 yield traits, divergent selection of 30%, 40%, and 50% of the 327	



cows restored 56%, 72%, and 88% of the loss from selecting 50% of cows at random, 328	

compared to genotyping all the available cows. 329	

» Table 4 near here « 330	

To increase the correlation between the genomic EBV and phenotypes, different 331	

criteria were used for selecting cows to be genotyped (Table 5). Results were inconsistent 332	

across trait. For fat yield, correlation was the highest when genotyping was done based on 333	

GMI ranks (scenario 10), for milk and protein yield when selection was based on milk yield 334	

(scenario 8), and for calving interval when ranking was based on PLI (scenario 9). When PLI 335	

or GMI were used as selection criterion correlations were always greater than in scenarios 336	

where cows were selected at random. The correlations between PLI and yield traits were: 337	

0.27 for milk yield, 0.39 for fat, and 0.36 for protein yield. Between GMI and yield traits they 338	

were: 0.29 for milk yield, 0.46 for fat yield, and 0.42 for protein yield. For calving interval 339	

the correlation with both PLI and GMI was negative (–0.13 and –0.16, respectively) which is 340	

expected as long calving interval is not desired. 341	

» Table 5 near here « 342	

Bias 343	

Table 6 shows the slopes of the regressions of phenotypes on genomic EBV for a range of 344	

scenarios, where unbiasedness is indicated by a slope of 1, with under- and over-estimation 345	

indicated by slopes >1 and <1 respectively. There is only occasional evidence for 346	

underestimation of differences in breeding values: using bulls only for the training set 347	

(scenario 1) when predicting fat yield, and using the 50% of cows from the upper tail 348	

(scenario 4) when predicting protein yield. However an overview of Table 6 suggests that 349	

random selection of cows were less likely to be biased with selection strategies involving 350	



only the tails having a trend towards overestimation. This was examined by comparing 351	

regression slopes within cross-validation folds for scenarios 3, 4, and 5 where 50% of cows 352	

were selected either randomly, from the upper tail only, or from both tails respectively. 353	

Reductions in slope of 0.175 ± 0.052, 0.077 ± 0.034, and 0.091 ± 0.032 for milk, fat and 354	

protein yield, respectively, were observed when 50% of cows from both tails were selected 355	

compared to random selection (cf. scenarios 5 and 3). Selection from the upper tail alone 356	

increased the trend towards overestimation, particularly for fat and protein yield, by with 357	

further reductions in slope of 0.052 ± 0.057, 0.209 ± 0.041, and 0.189 ± 0.039 for the same 358	

three traits (cf. scenarios 4 and 5). Note that uncertainty in whether or not predictions for 359	

scenario 3 are themselves unbiased preclude stating that scenarios 4 and 5 overestimate true 360	

differences in breeding values. Regression slopes for calving intervals varied widely. 361	

» Table 6 near here « 362	

Predicting Benefits of Genotyping Strategies 363	

Figure 2 shows the relationship between 𝑟QB*, the square of the reciprocal of the values shown 364	

in Table 4 and (𝑛𝛿)BV where 𝑛 is the number of records in the training set and 𝛿 is the 365	

fractional change in genetic variance arising from selection (see Appendix B). The 366	

expectation is that the relationship is linear and this was broadly observed. Some biases are 367	

evident with the points representing scenarios with selection tending to be less than predicted 368	

from the regression and factors contributing to the deviations are discussed below. The model 369	

correctly predicts that scenarios 5, 6, and 7 using divergent selection for milk yield, fat yield, 370	

and protein yield will be more accurate than scenario 3 with random selection of 50%. The 371	

threshold for the equivalence of divergent selection to random selection of 50% depends on 372	

the heritability, but for all yield traits the model predicted thresholds between 20% and 30%, 373	

with traits of higher heritability having thresholds associated with greater intensity. 374	



» Figure 2 near here « 375	

DISCUSSION 376	

There are fewer than 200 progeny tested Guernsey bulls from The Royal Guernsey 377	

Agricultural & Horticultural Society and The English Guernsey Cattle Society with 378	

genotypes available for use as a training set for initiating genomic evaluations. The results 379	

showed that these alone had weaker predictive power than the use of BLUP and in this 380	

population lead to biased estimates of breeding values. Whilst genomic information can be 381	

combined with the information from pedigree (Legarra et al., 2009; Meuwissen et al., 2011), 382	

obtaining substantial increases in accuracy, especially for functional traits such as calving 383	

interval will come from increasing the training set size. However, the number of progeny 384	

tested bulls per year in the Guernsey is small and their number is not expected to increase 385	

significantly in the near future. There are three possible solutions to increase the accuracy of 386	

breeding values obtained: (i) to include genotypes of proven bulls from another cattle breed, 387	

which to date has met with limited success (Hayes et al., 2009; Olson et al., 2012; Hozé et al., 388	

2014); (ii) to include genotypes from the same breed but from another country (Cooper et al., 389	

2016), or (iii) as tested here, to include genotypes from cows with their own records (Pryce et 390	

al., 2012; Calus et al., 2013). The results showed that supplementing the training set with 391	

approximately 1,200 genotyped cows was sufficient to boost the accuracy of GBLUP to 392	

outperform BLUP by between 11% and 19% and also reduced the bias of the predictions for 393	

yield traits. This demonstrates that even for a numerically small commercial dairy breed, 394	

genomic approaches have significant potential, and argues for a program of cow genotyping 395	

to further increase accuracy by increasing the size of the training set. 396	

The study provided some support for the proposition of Habier et al. (2010) that 397	

genotyping cows is valuable as animals may share more recent relationships and thus have 398	



more consistent LD. Support comes from the estimated genetic correlations (𝑟Z) of ~0.6 399	

between the phenotypes of the training set of bulls and the training set of cows, which was 400	

significantly different from 1. The training set of bulls used to predict the Guernsey Island 401	

sub-population contained bulls with over 25,000 progeny contributing records for each of the 402	

traits considered here, but their dates of birth spanned over 50 years and they come from 403	

different sub-populations of the breed. Such differences in age and sub-population would 404	

introduce differences in the linkage relationships between the training set of bulls and the 405	

Guernsey Island population which provided all the cow data. Nevertheless, other factors may 406	

also contribute to the genetic correlations observed, such as differences in trait definitions as 407	

daily milk records were used for the prediction of bulls PTA for yield traits, while 305-day 408	

lactation records were used for cows. In this data there was very little benefit in from using 409	

bivariate models to predict breeding values compared to a univariate model which assumes 410	

𝑟Z = 1. The explanation lies in 2 opposing effects, when 𝑟Z < 1 the information content of 411	

the bull data is reduced in its predictive value, potentially reducing accuracy, whereas 412	

removing the assumption that 𝑟Z = 1 removes some bias in the estimating the true marker 413	

effects in Guernsey Island cows. It would be anticipated that as the training set increases in 414	

size the bivariate model would ultimately emerge as the more accurate due to its greater 415	

veracity. The imperfect correlation is a further factor to incorporate into the formulae of de 416	

Roos (2011) in attempting to provide an exchange rate between the values of cow phenotypes 417	

and de-regressed bull proofs. 418	

Notwithstanding the value of genotyping cows, a numerically small commercial breed 419	

will need to be cost-effective in establishing a genotyping programme and this study showed 420	

that both imputation and selective genotyping can play an important role in this. The value of 421	

imputation in allowing the routine genotyping to be carried out with low-density chips has 422	

been demonstrated in other studies (Cleveland and Hickey, 2013; Boison et al., 2015). 423	



However, this is one of the first reports to quantify the value of selective genotyping for 424	

genomic selection in dairy cattle in practice, although others e.g. Jiménez-Montero (2012) 425	

have suggested benefits from simulations. Compared to genotyping 50% of the cows at 426	

random, divergent selection of 50% using extremes at either tail recovered 88% of the 427	

information that was lost from not genotyping all the cows. It is important to note that 428	

directional selection for genotyping was much worse than divergent selection for genotyping 429	

and worse than random selection. 430	

In this study random assignment was used for conducting the cross validation and this 431	

may be less desirable for predicting the accuracy of selection of young bulls than alternative 432	

assignment strategies (Cooper et al., 2015) as it has been reported to lead to higher estimates 433	

of accuracy than appropriate (Pérez-Cabal et al., 2012). However the alternative strategies 434	

such as forward prediction of young sires or a cut in the study defined by time suggested by 435	

Cooper et al. (2015) are difficult to apply in this small population where only cows present in 436	

2014 could be genotyped. For example, if young sires with at least 10 daughters were to be 437	

used the most recent sample would contain 6 sires born in 2007 and 2008. Whilst these 438	

alternative strategies are relevant to prediction accuracy of the young animals in the most 439	

recent birth cohort, the comparison of genotyping strategies among the cows might be 440	

expected to be more robust to these strategies, with the mean absolute genomic relatedness 441	

between the training and validation data sets varying between 0.029 and 0.032 across the 442	

different scenarios. 443	

The value of creating training sets for the purpose of genomic prediction with 444	

increased genetic variance has been explored previously in case-control studies (Daetwyler et 445	

al., 2008), and using non-random mating or reproductive technology to increase 446	

homozygosity (Nirea et al., 2012). Both studies provided theoretical justification for the 447	

benefits in accuracy from increasing the genetic variance in the training set. Here the 448	



prediction equation of Daetwyler et al. (2008, 2010) was extended to encompass selection of 449	

the phenotypes for genotyping by considering the genetic variance captured in the training 450	

set. The predictions were broadly accurate in predicting order and the magnitude of 451	

differences. There is sampling variation in the data and the cross-validation which will affect 452	

the performance of the predictions through the y-values of Figure 2. However, there are 453	

additional potential errors introduced by the use of the UK consensus heritabilities as their 454	

relevance to the true heritabilities for this population has not been established, although they 455	

are used for the UK genetic evaluations. The predictions derived are dependent on the 456	

heritability assumed for a trait in 2 ways: firstly in the de-regression process which affects all 457	

scenarios (through the y-values in Figure 2); and secondly, where selection was practiced, in 458	

the prediction of genetic variance and consequently in the x-values. The differential impact 459	

may explain in part why the scenarios with divergent selection tend to lie beneath the 460	

regression lines. 461	

CONCLUSIONS 462	

The study has shown with real data that using cow genotypes selected with divergent 463	

strategies can provide a cost effective route for building training sets in small dairy 464	

populations. The correlation between the genomic EBV and phenotypes increased when cow 465	

phenotypes were used for the prediction of genomic EBV. When half of the population was 466	

genotyped, genotyping only individuals with phenotypes in either tail was shown to be better 467	

than genotyping them at random or genotyping only individuals with upper tail phenotypes. 468	

Genotyping cows with tail phenotype covered on average 88% of the difference between the 469	

scenario where all the cows were genotyped or only half of them were genotyped at random. 470	

Using GMI for selection of cows for genotyping yields a correlation that was comparable to 471	

the correlations obtained in scenarios when cows were selected based on the values for each 472	



trait. Genotyping only the individuals from either tail will enable the Guernsey cattle breed in 473	

Guernsey Island and United Kingdom to successfully adopt genomic selection and use the 474	

available financial resources optimally. 475	
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APPENDIX A576	

 577	

 Figure A1. Heterozygosity rate and proportion of missing genotypes for GeneSeek Genomic 578	

Profiler Version 3 chip (left from vertical dashed line there are genotypes with <0.15 of 579	

missing genotypes and in-between horizontal lines there are genotypes within the range of 580	

± 3 SD of overall heterozygosity rate). 581	



 582	

Figure A2. Heterozygosity rate and proportion of missing genotypes for GeneSeek Genomic 583	

Profiler HD Version 1 chip (left from vertical dashed line there are genotypes with <0.15 of 584	

missing genotypes and in-between horizontal lines there are genotypes within the range of 585	

± 3 SD of overall heterozygosity rate). 586	



 587	

Figure A3. Heterozygosity rate and proportion of missing genotypes for Illumina BovineHD 588	

chip (left from vertical dashed line there are genotypes with <0.15 of missing genotypes and 589	

in-between horizontal lines there are genotypes within the range of ± 3 SD of overall 590	

heterozygosity rate). 591	

592	



APPENDIX B 593	

The prediction formulae of Daetwyler et al. (2008, 2010) modified for the prediction 594	

accuracy of phenotypes by genomic EBV (𝑔) is of the form 𝑟Q* = ℎ*𝜆(𝜆 + 1)BV where 𝑟Q is 595	

the accuracy, 𝜆 = 𝑛ℎ*/𝑀@, 𝑛 is the number of training records, ℎ* is the heritability and 𝑀@ 596	

is the number of independent segments, a property of the population genome that is assumed 597	

not to vary between traits. The derivation involves the ratio of the genetic variances in the 598	

validation set and the training set (see Daetwyler et al., 2008), which is 1 when the training 599	

set and validation set are random samples from the same population. This can be modified for 600	

a selected training set and randomly sampled validation set with the outcome 𝑟Q* =601	

ℎ*𝜆∗(𝜆∗ + 1)BV where 𝜆∗ = 𝑛ℎ∗*/𝑀@ and ℎ∗* = ℎ*𝑣𝑎𝑟(𝑔∗)/𝑣𝑎𝑟(𝑔). Therefore, accuracy is 602	

predicted to increase as the genetic variance in the training set increases, a conclusion also 603	

reached by Nirea et al. (2012). Let 𝛿 = 𝑣𝑎𝑟(𝑔∗)/𝑣𝑎𝑟(𝑔). Daetwyler et al. (2008) explored 604	

selection arising from case-control studies but directional or divergent selection on phenotype 605	

can also be incorporated. For directional truncation selection, and assuming a normal 606	

distribution, 𝛿 = (1 − 𝑘dℎ*) where 𝑘d = 𝑖d(𝑖d − 𝑥d)	with 𝑖d the intensity of selection and 607	

𝑥d is the truncation point for N(0,1) for the selection proportion 𝑞 (Bulmer, 1971). For 608	

divergent selection with selection proportion 𝑞 (assumed 𝑞/2 upper and lower tail) there are 609	

2 sources of genetic variance, between groups and within groups and the total variance is 610	

their sum. Within groups the genetic variance is 𝑣𝑎𝑟(𝑔) = (1 − 𝑘d/*ℎ*) as previously, and 611	

between groups is 𝑣𝑎𝑟(𝑔)𝑖d/** ℎ*, giving the result 𝛿 = (1 + 𝑖d/*𝑥d/*ℎ*) for divergent 612	

selection. 613	

The prediction accuracy for 𝑟Q contains the unknown 𝑀@ but the dependence on the selection 614	

can be examined by considering 𝑟QB* = (1/ℎ*)(1 + 𝜆∗BV) which is a linear regression on 615	

(𝑛𝛿)BV with a slope dependent on ℎ* and 𝑀@ and intercept inversely related to ℎ*. As an 616	



example for divergent selection with 𝑞 = 1/2: 𝑥d/* = 0.674, 𝑖d/* = 1.271, and 𝛿 = 1.472 for 617	

ℎ* = 0.55.  618	



TABLES 619	

Table 1 Strategies for cow selective genotyping with the number of cows in the reference 620	

population.1 621	

Scenario Selection strategy for 
cows 

Cows genotyped 
(%)2 

Number of cows in the reference 
population 

Yield traits Calving interval 

1 
None 

0 0 0 

2 100 1176 893 

3 Random 50 588 446 

4 
Extreme values in 
upper tail within each 
trait 

50 588 446 

5 
Extreme values in 
either tail within each 
trait 

50 588 446 

6 40  470 357 

7 30 392 268 

8 
Extreme values from 
either tail for corrected 
milk yield 

50 588 446 

9 Extreme values from 
either tail for PLI 50  588 446 

10 Extreme values from 
either tail for GMI 50 588 446 

1For divergent selection using either tail, selection is assumed to be equally divided between 622	

the tails. 623	

2From all the cows 10% were used for the purpose of validation and the rest were available 624	

for estimating the SNP effects.  625	



Table 2 Correlation, genotype, and allele concordance between true and imputed genotypes 626	

over 10-fold cross-validations. 627	

 Between individuals  Between SNP 

 Mean SD  Mean SD 

Correlation 0.952 0.033  0.945 0.072 

Genotype concordance 0.961 0.024  0.961 0.044 

Allele concordance 0.980 0.012  0.980 0.024 

  628	



Table 3 The correlation between genomic estimated breeding values and phenotypes using 629	

different methods of prediction. SE are given in parentheses based on the outcomes from the 630	

10 validation sets. 631	

Trait Method 

GBLUP 

(bulls) 

GBLUP 

(bulls + cows) 

Bivariate 

GBLUP 

BLUP 

(bulls + cows) 

Milk yield 0.213 (0.030) 0.376 (0.019) 0.376 (0.020) 0.316 (0.025) 

Fat yield 0.236 (0.020) 0.347 (0.025) 0.349 (0.024) 0.310 (0.034) 

Protein yield 0.210 (0.026) 0.323 (0.027) 0.327 (0.029) 0.291 (0.032) 

Calving interval 0.057 (0.029) 0.042 (0.031) NA1 0.018 (0.044) 

1Convergence was not achieved 632	

  633	



Table 4 The correlation between genomic estimated breeding values and phenotypes from 634	

different scenarios of selecting cows for genotyping using the univariate GBLUP method. SE 635	

are given in parentheses based on the outcomes from the 10 validation sets. 636	

Trait 
Scenario1 

2 3 4 5 6 7 

Milk yield 
0.376 

(0.019) 

0.322 

(0.021) 

0.284 

(0.029) 

0.369 

(0.022) 

0.364 

(0.021) 

0.353 

(0.022) 

Fat yield 
0.347 

(0.025) 

0.314 

(0.021) 

0.264 

(0.020) 

0.340 

(0.025) 

0.333 

(0.024) 

0.327 

(0.024) 

Protein yield 
0.323 

(0.027) 

0.287 

(0.023) 

0.246 

(0.026) 

0.322 

(0.027) 

0.316 

(0.027) 

0.313 

(0.028) 

Calving 

interval 

0.042 

(0.031) 

0.043 

(0.032) 

0.049 

(0.027) 

0.040 

(0.031) 

0.046 

(0.030) 

0.042 

(0.031) 

1Scenarios: 2 - all cows; 3 - 50% selected at random; 4 - 50% from upper tail; 5 - 50% from 637	

either tail; 6 - 40% from either tail; 7 - 30% from either tail. 638	

  639	



Table 5 Correlation between genomic estimated breeding values and phenotypes with 640	

different criterion for divergent selection of 50% of cows for genotyping using the univariate 641	

GBLUP method. SE are given in parentheses based on the outcomes from the 10 validation 642	

sets. 643	

Trait Scenario1 

3 5 8 9 10 

Milk yield 0.322 (0.021) 0.369 (0.022) 0.369 (0.022) 0.338 (0.028) 0.354 (0.015) 

Fat yield 0.314 (0.021) 0.340 (0.025) 0.336 (0.026) 0.328 (0.022) 0.342 (0.013) 

Protein yield 0.287 (0.023) 0.322 (0.027) 0.331 (0.016) 0.316 (0.028) 0.326 (0.014) 

Calving interval 0.043 (0.032) 0.040 (0.031) 0.051 (0.026) 0.055 (0.032) 0.045 (0.045) 

1Scenarios: 3 - at random; 5 - from either tail for the same trait as the genomic EBV; 8 - from 644	

either tail for milk yield; 9 - from either tail for PLI; 10 - from either tail for GMI. 645	

  646	



Table 6 Bias expressed as slope of the regression of phenotypes on genomic EBV from 647	

different scenarios of selecting cows for genotyping using the univariate GBLUP method. SE 648	

are given in parentheses based on the outcomes from the 10 validation sets. 649	

Trait Scenario1 

1 2 3 4 5 

Milk yield 0.829 (0.124) 1.081 (0.076) 1.065 (0.099) 0.838 (0.106) 0.890 (0.066) 

Fat yield 0.774 (0.066) 1.023 (0.083) 1.011 (0.073) 0.726 (0.063) 0.935 (0.077) 

Protein yield 0.840 (0.102) 1.018 (0.102) 1.006 (0.101) 0.726 (0.089) 0.915 (0.088) 

Calving interval 1.539 (0.802) 2.300 (1.541) 2.056 (1.556) 2.095 (1.217) 3.390 (2.544) 

1Scenarios: 1 - only bulls; 2 - all cows; 3 - 50% selected at random; 4 - 50% from upper tail; 650	

5 - 50% from either tail. 651	

  652	



FIGURES653	

654	
 Jenko et al., Figure 1  655	



 656	

Jenko et al., Figure 2  657	



Figure 1. The 2-step process used for imputation of individuals up to the 75K chip, which 658	

was necessitated by a subset of the SNP loci appearing only on the 25K chip. 659	

 660	

Figure 2. The relationship of the reciprocal squared accuracy for predicting phenotypes (𝑟QB*) 661	

of milk yield, fat yield, and protein yield for scenarios 2 to 7 inclusive with the reciprocal of 662	

information ((𝑛𝛿)BV, see Appendix B), together with their linear trend lines. Milk yield, fat 663	

yield, and protein yield are shown with circle, square, and diamond symbols, respectively. 664	

The values of 𝑛 used were 1, 0.5, 0.5, 0.5, 0.4, and 0.3 for scenarios 2 to 7 respectively; 𝛿 =1 665	

for scenarios 2 and 3, but depend on the heritability of the trait for all others. For all traits the 666	

order of scenarios on the x-axis is (2, 5, 6, 7, 3, and 4). 667	


